(12分)

設(shè)橢圓C:(a>b>0)過(guò)點(diǎn)(0,4),離心率為

(1)   求C的方程。

(2)   求過(guò)點(diǎn)(3,0)且斜率為 的直線被橢圓C所截線段的中點(diǎn)坐標(biāo)。

 

 

【答案】

解:(1)橢圓C的方程                            6分

(2)直線方程為                                7分

直線與橢圓方程聯(lián)立得                         8分

韋達(dá)定理解得中點(diǎn)坐標(biāo)                               12分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m>1,直線l:x-my-
m
2
2
=0,橢圓C:
x2
m2
+y2
=1,F(xiàn)1,F(xiàn)2分別為橢圓C的左右焦點(diǎn).設(shè)直線l與橢圓C交于A、B兩點(diǎn),△AF1F2,△BF1F2的重心分別為G,H,若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交z軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=0
,過(guò)A,Q,F(xiàn)2三點(diǎn)的圓的半徑為2.過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).
(I)求橢圓C的方程;
(Ⅱ)設(shè)直線l的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形.如果存在,求出m的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都模擬)已知m>1,直線l:x-my-
m2
2
=0,橢圓C:
x2
m2
+y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn).
(I)當(dāng)直線l過(guò)右焦點(diǎn)F2時(shí),求直線l的方程;
(II)當(dāng)直線l與橢圓C相離、相交時(shí),求m的取值范圍;
(III)設(shè)直線l與橢圓C交于A、B兩點(diǎn),△AF1F2,△BF1F2的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:模擬題 題型:解答題

如圖,設(shè)橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且,若過(guò) A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線l:相切,過(guò)定點(diǎn) M(0,2)的直線l1與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間)。

(1)求橢圓C的方程;
(2)設(shè)直線l1的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,請(qǐng)說(shuō)明理由;
(3)若實(shí)數(shù)λ滿足,求λ的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市朝陽(yáng)區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且,若過(guò)A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線l:相切.過(guò)定點(diǎn)M(0,2)的直線l1與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l1的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形.如果存在,求出m的取值范圍,如果不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若實(shí)數(shù)λ滿足,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案