已知函數(shù)
(1)對任意的恒成立,求實(shí)數(shù)a的取值范圍;
(2)對任意的的值域是,求實(shí)數(shù)a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若實(shí)數(shù)、、滿足,則稱比遠(yuǎn)離.
(1)若比1遠(yuǎn)離0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比遠(yuǎn)離;
(3)已知函數(shù)的定義域.任取,等于和中遠(yuǎn)離0的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分8分。
若實(shí)數(shù)、、滿足,則稱比接近.
(1)若比3接近0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若實(shí)數(shù)、、滿足,則稱比接近.
(1)若比3接近0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)若實(shí)數(shù)、、滿足,則稱比接近.
(1)若比3接近0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題(上海秋季)解析版(理) 題型:解答題
[番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。
若實(shí)數(shù)、、滿足,則稱比遠(yuǎn)離.
(1)若比1遠(yuǎn)離0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比遠(yuǎn)離;
(3)已知函數(shù)的定義域.任取,等于和中遠(yuǎn)離0的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓于、兩點(diǎn),交直線于點(diǎn).若,證明:為的中點(diǎn);
(3)對于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點(diǎn)、滿足,寫出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.
[番茄花園1]22.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com