已知直線與橢圓相交于AB兩點(diǎn).
(1)若橢圓的離心率為,焦距為2,求線段AB的長(zhǎng);
(2)若向量與向量互相垂直(其中O為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離心率 時(shí),求橢圓的長(zhǎng)軸長(zhǎng)的最大值
解:(1)   
∴橢圓的方程為   …………2分
聯(lián)立
…5分
(II)

 整理得 …………7分

整理得:                                           …………9分
代入上式得
                       …………10分

由此得    故長(zhǎng)軸長(zhǎng)的最大值為.…………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正六邊形的兩個(gè)頂點(diǎn)為橢圓的兩個(gè)焦點(diǎn),其余四個(gè)頂點(diǎn)在
橢圓上,則該橢圓的離心率的值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點(diǎn)重合,則該橢圓的離心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若不過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),且求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
橢圓的離心率為分別是左、右焦點(diǎn),過F1的直線與圓相切,且與橢圓E交于A、B兩點(diǎn)。
(1)當(dāng)時(shí),求橢圓E的方程;
(2)求弦AB中點(diǎn)的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知A(1,1)是橢圓)上一點(diǎn),F1­,F(xiàn)2
 
是橢圓上的兩焦點(diǎn),且滿足 .
(I)求橢圓方程;
(Ⅱ)設(shè)C,D是橢圓上任兩點(diǎn),且直線AC,AD的斜率分別為  ,若存在常數(shù) 使/,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在圓上任取一點(diǎn),過點(diǎn)軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點(diǎn),為曲線上一動(dòng)點(diǎn),求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是橢圓的兩焦點(diǎn),為橢圓上一點(diǎn),若,則離心率的范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓C1的離心率等于,拋物線C2x2=2py(p>0)的焦點(diǎn)在橢圓C1的頂點(diǎn)上.
(1)求拋物線C2的方程;
(2)若過M(-1,0)的直線l與拋物線C2交于E、F兩點(diǎn),又過E、F作拋物線C2的切線l1、l2,當(dāng)l1l2時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案