三棱柱中,側(cè)棱底面,底面三角形是正三角形,中點(diǎn),則下列敘述正確的是(    )
A.是異面直線
B.平面
C.為異面直線,且
D.平面
C

試題分析:作出草圖:知都在平面BCC1B1內(nèi),所以不是異面直線;對于B,取AB的中點(diǎn)為F,聯(lián)結(jié)CF,由于底面三角形是正三角形,所以CFAB,又因?yàn)閭?cè)棱底面,所以底面ABC,從而有CFAA1,所以有CF平面,而過一點(diǎn)有且只有一條直線和一個(gè)平面垂直,故AC與平面不可能垂直;同理可知AE平面BCC1B1,所以,顯然、為異面直線,故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐的底面為菱形,,且,,分別是的中點(diǎn).
(1)求證:∥平面
(2)過作一平面交棱于點(diǎn),若二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體中,的中點(diǎn).

(1)求證:平面;
(2)求證:平面平面;
(3)求直線BE與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知
u
=(-2,2,5)
,
v
=(6,-4,4)
,
u
,
v
分別是平面α,β的法向量,則平面α,β的位置關(guān)系式( 。
A.平行B.垂直
C.所成的二面角為銳角D.所成的二面角為鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中點(diǎn).
(I)求證:A1B平面AEC1;
(II)若棱AA1上存在一點(diǎn)M,滿足B1M⊥C1E,求AM的長;
(Ⅲ)求平面AEC1與平面ABB1A1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1中,點(diǎn)P是直線BC1的動點(diǎn),則下列四個(gè)命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成角的大小不變;
③二面角P-AD1-C的大小不變:
其中正確的命題有____      .(把所有正確命題的編號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,為三條不同的直線,,為兩個(gè)不同的平面,下列命題中正確的是(    )
A.,,且,則.
B.若平面內(nèi)有不共線的三點(diǎn)到平面的距離相等,則.
C.若,則.
D.若,,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知α,β是兩個(gè)不同的平面,給出下列四個(gè)條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個(gè)平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
可以推出α∥β的是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面、和直線,給出條件:①;②;③;④;⑤.
由這五個(gè)條件中的兩個(gè)同時(shí)成立能推導(dǎo)出的是(   )
A.①④B.①⑤C.②⑤D.③⑤

查看答案和解析>>

同步練習(xí)冊答案