【題目】在△ABC中,內角A、B、C的對邊分別為a、b、c,且2asinB= b.
(1)求角A的大;
(2)若0<A< ,a=6,且△ABC的面積S= ,求△ABC的周長.
【答案】
(1)解:由題意2asinB= b.
由正弦定理得:2sinAsinB= sinB.
∵0<B<π,sinB≠0
∴sinA= .
∵0<A<π.
∴A= 或 .
(2)解:∵△ABC的面積S= ,即 bcsinA= ,
可得:bc= .
由余弦定理得,a2=b2+c2﹣2bccosA=(b+c)2﹣3bc,即36=(b+c)2﹣28,
從而b+c=8
故△ABC的周長l=a+b+c=14.
【解析】(1)由2asinB= b,根據(jù)正弦定理化簡即可求角A的大。2)利用“整體”思想,利用余弦定理求解b+c的值,即可得△ABC的周長.
【考點精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;.
科目:高中數(shù)學 來源: 題型:
【題目】已知h(x)=|2x﹣1|+m|x+3|(m>0),且h(x)的最小值是7. (Ⅰ)求m的值;
(Ⅱ)求出當h(x)取得最小值時x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數(shù)列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數(shù)列{an}及{bn}的通項公式;
(Ⅱ)設數(shù)列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中說法正確的是( )
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量 , 滿足 ,則 與 的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將圓x2+y2=1上每一點的縱坐標不變,橫坐標變?yōu)樵瓉淼? ,得曲線C. (Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設直線l:3x+y+1=0與C的交點為P1、P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內角A,B,C的對應邊分別為a,b,c,且 .則使得sin2B+sin2C=msinBsinC成立的實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=a,點P在邊AB上,設 =λ (λ>0),過點P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE將△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF將△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求證:B′C∥平面A′PE;
(2)是否存在正實數(shù)λ,使得二面角C﹣A′B′﹣P的大小為60°?若存在,求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a<0,曲線f(x)=2ax2+bx+c與曲線g(x)=x2+alnx在公共點(1,f(1))處的切線相同. (Ⅰ)試求c﹣a的值;
(Ⅱ)若f(x)≤g(x)+a+1恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com