【題目】設(shè)a,b∈R,c∈[0,2π),若對(duì)任意實(shí)數(shù)x都有2sin(3x﹣ )=asin(bx+c),定義在區(qū)間[0,3π]上的函數(shù)y=sin2x的圖象與y=cosx的圖象的交點(diǎn)個(gè)數(shù)是d個(gè),則滿足條件的有序?qū)崝?shù)組(a,b,c,d)的組數(shù)為(
A.7
B.11
C.14
D.28

【答案】D
【解析】解:∵對(duì)任意實(shí)數(shù)x都有2sin(3x﹣ )=asin(bx+c),∴|a|=2,
若a=2,則方程等價(jià)于sin(3x﹣ )=sin(bx+c),則函數(shù)的周期相同,若b=3,此時(shí)c= ;若b=﹣3,此時(shí)c= ;
若a=﹣2,則方程等價(jià)于sin(3x﹣ )=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,此時(shí)c= ;若b=3,此時(shí)c=
綜上,滿足條件的數(shù)組(a,b,c,)為(2,3, ),(2,﹣3, ),(﹣2,﹣3, ),(﹣2,3, )共4組.
而當(dāng)sin2x=cosx時(shí),2sinxcosx=cosx,得cosx=0或sinx= ,∴x= 或x= 或x=
又∵x∈[0,3π],∴x=
∴滿足條件的有序數(shù)組(a,b,c,d)共有4×7=28.
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張經(jīng)營(yíng)某一消費(fèi)品專賣店,已知該消費(fèi)品的進(jìn)價(jià)為每件40元,該店每月銷售量(百件)與銷售單價(jià)x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費(fèi)用為每月10000元.

(1)把y表示為x的函數(shù);

(2)當(dāng)銷售價(jià)為每件50元時(shí),該店正好收支平衡(即利潤(rùn)為零),求該店的職工人數(shù);

(3)若該店只有20名職工,問(wèn)銷售單價(jià)定為多少元時(shí),該專賣店可獲得最大月利潤(rùn)?(注:利潤(rùn)=收入-支出)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R.
(1)當(dāng)a=1時(shí),解不等式f(x)≥5;
(2)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:

(i)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形中, , , , 底面, 底面且有.

(1)求證: ;

(2)若線段的中點(diǎn)為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的圓臺(tái)中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺(tái)的一條母線.

(1)已知G,H分別為EC,F(xiàn)B的中點(diǎn),求證:GH∥平面ABC;
(2)已知EF=FB= AC=2 ,AB=BC,求二面角F﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的角平分線AD的延長(zhǎng)線交它的外接圓于點(diǎn)E.

(1)證明:△ABE∽△ADC;
(2)若△ABC的面積S= ADAE,求∠BAC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年3月山東省高考改革實(shí)施方案發(fā)布:2020年夏季高考開(kāi)始全省高考考生總成績(jī)將由語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門(mén)統(tǒng)一高考成績(jī)和學(xué)生自主選擇的普通高中學(xué)業(yè)水平等級(jí)性考試科目的成績(jī)共同構(gòu)成.省教育廳為了解正就讀高中的學(xué)生家長(zhǎng)對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長(zhǎng)作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見(jiàn).右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(Ⅰ)請(qǐng)根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:

贊成

不贊成

合計(jì)

城鎮(zhèn)居民

農(nóng)村居民

合計(jì)

(Ⅱ)試判斷我們是否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.

【附】,其中.

0.150

0.100

0.050

0.005

0.001

2.072

2.706

3.841

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,則滿足的取值范圍是()

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案