【題目】在平面直角坐標系xOy中,己知橢圓C的左、右頂點為A,B,右焦點為F.過點A且斜率為k)的直線交橢圓C于另一點P.

1)求橢圓C的離心率;

2)若,求的值;

3)設直線l:,延長AP交直線l于點Q,線段BO的中點為E,求證:點B關于直線EF的對稱點在直線PF上。

【答案】(1)(2)(3)詳見解析

【解析】

1)根據(jù)橢圓的方程,結合橢圓離心率的求法,即可求出結果;

2)先由題意,得到直線AP的方程為代入橢圓方程,求出點P的坐標,表示出,進而可得出結果;

3)由直線AP的方程與直線l的方程聯(lián)立,求出,表示出直線EF的斜率,再由結合韋達定理,以及題中條件,表示出直線PF的斜率,再由題意,即可證明結論成立.

1)因為橢圓C,

所以,.

,所以,

所以橢圓C的離心率.

2)因為直線AP的斜率為,且過橢圓C的左頂點

所以直線AP的方程為.

代入橢圓C的方程,

,即,

解得(舍去),

代入,得,

所以點P的坐標為.

又橢圓C的右頂點B2t,0),

所以,

所以.

3)直線AP的方程為,

代入,得,所以.

因為E為線段BQ的中點,所以,

因為焦點F的坐標為(t,0),

所以直線EF的斜率.

聯(lián)立y得,.

由于,

所以,

所以點P的坐標為,

所以直線PF的斜率.

而直線EF的斜率為2k,

若設,則有,即,

所以點B關于直線EF的對稱點在直線PF.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形為直角梯形,,,中點,,交于點,沿將四邊形折起,連接

(1)求證:平面;

(2)若平面平面

(I)求二面角的平面角的大;

(II)線段上是否存在點,使平面,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經測算某產品當促銷費用為萬元時,銷售量萬件滿足(其中 為正常數(shù)),現(xiàn)假定生產量與銷售量相等,已知生產該產品萬件還需投入成本萬元(不含促銷費用),產品的銷售價格定為萬元/萬件.

(1)將該產品的利潤萬元表示為促銷費用萬元的函數(shù);

2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐 中,底面 是邊長為 2 的正三角形,頂點 在底面上的射影為的中心,若的中點,且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市計劃銷售某種食品,現(xiàn)邀請甲、乙兩個商家進場試銷10天.兩個商家向超市提供的日返利方案如下:甲商家每天固定返利60元,且每賣出一件食品商家再返利3元;乙商家無固定返利,賣出不超出30件(含30件)的食品,每件食品商家返利5元,超出30件的部分每件返利10元. 經統(tǒng)計,試銷這10天兩個商家每天的銷量如圖所示的莖葉圖(莖為十位數(shù)字,葉為個位數(shù)字):

(1)現(xiàn)從甲商家試銷的10天中隨機抽取兩天,求這兩天的銷售量都小于30件的概率;

(2)根據(jù)試銷10天的數(shù)據(jù),將頻率視作概率,用樣本估計總體,回答以下問題:

①記商家乙的日返利額為X(單位:元),求X的分布列和數(shù)學期望;

②超市擬在甲、乙兩個商家中選擇一家長期銷售,如果僅從日返利額的數(shù)學期望考慮,請利用所學的統(tǒng)計學知識為超市作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩定點,若對于實數(shù),函數(shù))的圖像上有且僅有6個不同的點,使得成立,則的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四樓錐中,,.

1)求的長.

2)求直線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題,;命題關于的方程有兩個相異實數(shù)根.

1)若為真命題,求實數(shù)的取值范圍;

2)若為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案