【題目】已知四邊形為直角梯形,,,,中點,交于點,沿將四邊形折起,連接

(1)求證:平面;

(2)若平面平面

(I)求二面角的平面角的大;

(II)線段上是否存在點,使平面,若存在,求出的值,若不存在,請說明理由.

【答案】(1)見解析;(2)見解析;(3).

【解析】【試題分析】(1)依據題設條件,運用線面平行的判定定理推證;(2)依據題設建立空間直角坐標系,運用向量的坐標形式進行分析探求。

(1)證明:連結,則中點,設中點,連結,則,且

由已知

,所以四邊形為平行四邊形.

,即

平面,平面

所以平面

(2)由已知為邊長為2的正方形,

,

因為平面平面,又,

兩兩垂直.

為原點,分別為軸,軸,軸建立空間直角坐標系,

(I)可求平面法向量為

平面法向量為

所以二面角的平面角的大小為

(II)假設線段上是否存在點,使平面,設),

,

平面,則,可求

所以線段上存在點,使平面,且

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得第28屆亞錦賽冠軍,同時拿到亞洲唯一1張直通里約奧運會的入場券,賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價值球員),下表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計數(shù)據.

注:(1)表中表示出手次命中次;

(2)(真實得分率)是衡量球員進攻的效率,其計算公式為:

(1)從上述9場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中超過50%的概率;

(2)從上述9場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中至少有一場超過60%的概率;

(3)用來表示易建聯(lián)某場的得分,用來表示中國隊該場的總分,畫出散點圖如圖所示,請根據散點圖判斷之間是否具有線性相關關系?結合實際簡單說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個學生在一次競賽中要回答道題是這樣產生的道物理題中隨機抽取道化學題中隨機抽取;道生物題中隨機抽取.使用合適的方法確定這個學生所要回答的三門學科的題的序號(物理題的編號為,化學題的編號為,生物題的編號為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線lm,平面α、β,下列命題正確的是 (  )

A. lβ,lααβ

B. lβmβ,lαmααβ

C. lm,lα,mβαβ

D. lβmβ,lα,mαlmMαβ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2015高考天津,文20】已知函數(shù)

I)求的單調區(qū)間;

II)設曲線軸正半軸的交點為P,曲線在點P處的切線方程為,求證:對于任意的正實數(shù),都有;

III)若方程有兩個正實數(shù)根,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司試銷某種“上海世博會”紀念品,每件按30元銷售,可獲利50%,設每件紀念品的成本為a元.

(1)試求a的值;

(2)公司在試銷過程中進行了市場調查,發(fā)現(xiàn)銷售量y(件)與每件售價x(元)滿足關系y=-10x+800.設每天銷售利潤為W(元),求每天銷售利潤W(元)與每件售價x(元)之間的函數(shù)解析式;當每件售價為多少時,每天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2014福建,文22】已知函數(shù)為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.

(1)的值及函數(shù)的極值;

(2)證明:當時,

(3)證明:對任意給定的正數(shù),總存在,使得當時,恒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經過點,且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設是橢圓上的點直線為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,的坐標;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案