已知函數(shù)處取得極值.
(1)求的值;(2)求的單調(diào)區(qū)間.
(1)、
(2)的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為.

試題分析:(1)由已知
因為處取得極值,所以1和2是方程的兩根

(2)由(1)可得 
時,,是增加的;
時,,是減少的。
所以,的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為.
點評:中檔題,本題屬于導數(shù)的基本應用問題。在給定區(qū)間,導函數(shù)值非負,函數(shù)為增函數(shù);導函數(shù)值非正,函數(shù)為減函數(shù)。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)=,=,若曲線和曲線都過點P(0,2),且在點P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)當a=1時,若曲線y=f(x)在點M (x0,f(x0))處的切線與曲線y=g(x)在點P (x0, g(x0))處的切線平行,求實數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

, 已知函數(shù) 
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設曲線在點處的切線相互平行, 且 證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù),,其中為實數(shù).
(1)若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍;
(2)若上是單調(diào)增函數(shù),試求的零點個數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),.
(1)若處取得極值,求的極大值;
(2)若在區(qū)間的圖像在圖像的上方(沒有公共點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,曲線在點處切線的傾斜角的取值范圍為,則點到曲線對稱軸距離的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案