【題目】把函數(shù)y=sin(2x﹣ )的圖象向左平移 個單位后,所得函數(shù)圖象的一條對稱軸為( )
A.x=0
B.x=
C.x=
D.x=﹣
【答案】C
【解析】解:函數(shù)y=sin(2x﹣ )的圖象向左平移 個單位后,得到函數(shù)y=sin(2x+ )的圖象, 由2x+ =kπ+ ,k∈Z,即x= ,k∈Z,
當(dāng)k=0時,對稱軸為:x= .
故選C.
【考點精析】根據(jù)題目的已知條件,利用正弦函數(shù)的對稱性和函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識可以得到問題的答案,需要掌握正弦函數(shù)的對稱性:對稱中心;對稱軸;圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2cos ,數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前100項之和S100= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】九十年代,政府間氣候變化專業(yè)委員會(IPCC)提供的一項報告指出:使全球氣候逐年變暖的一個重要因素是人類在能源利用與森林砍伐中使CO2濃度增加.據(jù)測,1990年、1991年、1992年大氣中的CO2濃度分別比1989年增加了1個可比單位、3個可比單位、6個可比單位。若用函數(shù)模擬九十年代中每年CO2濃度增加的可比單位數(shù)y與年份增加數(shù)x的關(guān)系,模擬函數(shù)可選用二次函數(shù)或函數(shù)(其中a、b、c為常數(shù)).
(Ⅰ)寫出這兩個函數(shù)的解釋式;
(Ⅱ)若知1994年大氣中的CO2濃度比1989年增加了16個可比單位,請問用以上哪個函數(shù)作為模擬函數(shù)與1994年的實際數(shù)據(jù)更接近?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=ax2+2x﹣lnx(a∈R).
(Ⅰ)若 a=4,求函數(shù) f(x)的極值;
(Ⅱ)若 f′(x)在區(qū)間(0,1)內(nèi)有唯一的零點 x0,求 a 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,角、、的對邊分別為、、,為的外接圓半徑.
(1)若,,,求;
(2)在中,若為鈍角,求證:;
(3)給定三個正實數(shù)、、,其中,問:、、滿足怎樣的關(guān)系時,以、為邊長,為外接圓半徑的不存在,存在一個或存在兩個(全等的三角形算作同一個)?在存在的情兄下,用、、表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某班舉行的“慶五一”聯(lián)歡晚會開幕前已排好有8個不同節(jié)目的節(jié)目單,如果保持原來的節(jié)目相對順序不變,臨時再插進(jìn)去三個不同的新節(jié)目,且插進(jìn)的三個新節(jié)目按順序出場,那么共有__________種不同的插入方法(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com