【題目】求下列函數(shù)的導數(shù).

(1)yx4-3x2-5x+6;

(2)y=3x2xcos x

(3)y ;

(4)y=lg x ;

(5)y.

【答案】(1);

(2)

(3)

(4)y′=

(5)y′=3x2xx2cos x-2x3sin x

【解析】

試題根據(jù)初等函數(shù)的導數(shù)公式及導數(shù)運算法則 分別求出函數(shù)中各項的導數(shù)再進行求各或求差處理,最終得出結果.

試題解析:

(1) ;

(2) ;

(3)y′=( )′+( )′=2(x2)′+3(x3)′

=-4x3-9x4=- ;

(4)y′=(lg x)′-(x2)′=

(5)∵yx3x ,

y′=(x3)′+(x)′+

=3x2x

=3x2xx2cos x-2x3sin x.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某自來水廠的蓄水池有噸水,水廠每小時可向蓄水池中注水噸,同時蓄水池又向居民小區(qū)不間斷供水,小時內供水總量為噸,其中

)從供水開始到第幾小時,蓄水池中的存水量最少? 最少水量是多少噸?

)若蓄水池中水量少于噸時,就會出現(xiàn)供水緊張現(xiàn)象,請問:在一天的小時內,大約有幾小時出現(xiàn)供水緊張現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線過點

1)若直線的斜率為,證明:與圓相切;

2)若直線與圓交于兩點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若關于的不等式的解集為,求實數(shù)的值;

2)若對任意的,,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某港口有一個泊位,現(xiàn)統(tǒng)計了某月100艘輪船在該泊位停靠的時間(單位:小時),如果?繒r間不足半小時按半小時計時,超過半小時不足1小時按1小時計時,以此類推,統(tǒng)計結果如表:

?繒r間

2.5

3

3.5

4

4.5

5

5.5

6

輪船數(shù)量

12

12

17

20

15

13

8

3

(Ⅰ)設該月100艘輪船在該泊位的平均?繒r間為小時,求的值;

(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位停靠小時,且在一晝夜的時間段中隨機到達,求這兩艘輪船中至少有一艘在?吭摬次粫r必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐中,O為頂點S在底面ABCD內的投影,P為側棱SD的中點,且.

(1)證明:平面PAC.

(2)求直線BC與平面PAC的所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,幾何體AMDCNB是由兩個完全相同的四棱錐構成的幾何體,這兩個四棱錐的底面ABCD為正方形,,平面平面ABCD.

(1)證明:平面平面MDC.

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.

)證明: BC1//平面A1CD;

)設AA1= AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市有一面積為12000平方米的三角形地塊,其中邊長為200米,現(xiàn)計劃建一個如圖所示的長方形停車場,停車場的四個頂點都在的三條邊上,其余的地面全部綠化.若建停車場的費用為180/平方米,綠化的費用為60/平方米,設米,建設工程的總費用為.

1)求關于的函數(shù)表達式:

2)求停車場面積最大時的值,并求此時的工程總費用.

查看答案和解析>>

同步練習冊答案