精英家教網 > 高中數學 > 題目詳情
已知數列{an}為等比數列,Sn是它的前n項和,若a2•a3=2a1,且a4與2a7的等差中項為
5
4
,則S5=( 。
A、35B、33C、31D、29
分析:用a1和q表示出a2和a3代入a2•a3=2a1求得a4,再根據a4+2a7=a4+2a4q3,求得q,進而求得a1,代入S5即可.
解答:解:a2•a3=a1q•a1q2=2a1
∴a4=2
a4+2a7=a4+2a4q3=2×
5
4

∴q=
1
2
,a1=
a4
q3
=16
故S5=
16(1-
1
25
)
1-
1
2
=31
故選C.
點評:本題主要考查了等比數列的性質.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2009=(  )
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0且an≠1,若anan+1為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2013等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:在數列{an}中,an>0,且an≠1,若anan+1為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2011等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出“等和數列”的定義:從第二項開始,每一項與前一項的和都等于一個常數,這樣的數列叫做“等和數列”,這個常數叫做“公和”.已知數列{an}為等和數列,公和為
1
2
,且a2=1,則a2009=(  )
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數學 來源:2012--2013學年河南省高二上學期第一次考試數學試卷(解析版) 題型:選擇題

.定義:在數列{an}中,an>0且an≠1,若為定值,則稱數列{an}為“等冪數列”.已知數列{an}為“等冪數列”,且a1=2,a2=4,Sn為數列{an}的前n項和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習冊答案