【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足| |=| |= =2,則點(diǎn)集{P| =x +y ,|x|+|y|≤1,x,y∈R}所表示的區(qū)域的面積是 .
【答案】4
【解析】解:∵| |=| |= =2, 不妨設(shè) =(2,0), =(m,n),
∴ =2,2m=2,
解得m=1,n= .
∵ =x +y ,=x(2,0)+y = .
令a=2x+y,b= ,
解得 ,x= ,
由|x|+|y|≤1,x,y∈R,可得 + ≤1,
對(duì)a,b分類討論,畫出圖形,可得(a,b)滿足的區(qū)域?yàn)閳D中陰影部分.
可得(a,b)滿足的區(qū)域的面積為 =4 .
所以答案是:4 .
【考點(diǎn)精析】關(guān)于本題考查的平面向量的基本定理及其意義,需要了解如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(sinx,cosx), =(cosx,sinx),x∈R,函數(shù)f(x)= ( ﹣ ).
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[- , ]時(shí),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ),且對(duì)任意,都有.
(Ⅰ)用含的表達(dá)式表示;
(Ⅱ)若存在兩個(gè)極值點(diǎn), ,且,求出的取值范圍,并證明;
(Ⅲ)在(Ⅱ)的條件下,判斷零點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知b+c=2acosB.
(Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)求PB和平面PAD所成的角的大;
(2)證明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),且銷量與單價(jià)具有相關(guān)關(guān)系,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(單位:元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(單位:萬件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)現(xiàn)有三條y對(duì)x的回歸直線方程: =﹣10x+170; =﹣20x+250; =﹣15x+210;根據(jù)所學(xué)的統(tǒng)計(jì)學(xué)知識(shí),選擇一條合理的回歸直線,并說明理由.
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)服從(1)中選出的回歸直線方程,且該產(chǎn)品的成本是每件5元,為使公司獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定多少元?(利潤=銷售收入﹣成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)A(1,0),D(﹣1,0),點(diǎn)B,C在單位圓O上,且∠BOC= .
(Ⅰ)若點(diǎn)B( , ),求cos∠AOC的值;
(Ⅱ)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com