(2009•閔行區(qū)二模)(理)斜率為1的直線過拋物線y2=2px(p>0)的焦點(diǎn),且與拋物線交于兩點(diǎn)A、B.
(1)若p=2,求|AB|的值;
(2)將直線AB按向量
a
=(-p,0)
平移得直線m,N是m上的動(dòng)點(diǎn),求
NA
NB
的最小值.
(3)設(shè)C(p,0),D為拋物線y2=2px(p>0)上一動(dòng)點(diǎn),是否存在直線l,使得l被以CD為直徑的圓截得的弦長恒為定值?若存在,求出l的方程;若不存在,說明理由.
分析:(1)由已知條件,得到拋物線的方程,再根據(jù)拋物線的定義得到|AB|=x1+x2+p=4p,
(2)設(shè)直線l的方程,將直線的方程代入拋物線的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用向量坐標(biāo)運(yùn)算,求得
NA
NB
的以N點(diǎn)坐標(biāo)表示的函數(shù)式,利用二次函數(shù)求最值的方法,可求得所求的最小值.
(3)對于存在性問題,可先假設(shè)存在,即假設(shè)滿足條件的直線l存在,其方程為x=a,再利用l被以CD為直徑的圓截得的弦長恒為定值,求出p,若出現(xiàn)矛盾,則說明假設(shè)不成立,即不存在;否則存在.
解答:解:(1)設(shè)A(x1,y1),B(x2,y2),p=2時(shí),直線AB:y=x-1,代入y2=4x中
可得:x2-6x+1=0(2分)
則x1+x2=6,由定義可得:|AB|=x1+x2+p=8.(4分)
(2)直線AB:y=x-
p
2
,代入y2=2px(p>0)中,可得:x2-3px+
1
4
p2=0

則x1+x2=3p,x1x2=
p2
4
,設(shè)N(x0,x0+
p
2
)
,
NA
=(x1-x0,y1-x0-
p
2
),
NB
=(x2-x0,y2-x0-
p
2
)

NA
NB
=x1x2-x0(x1+x2)+
x
2
0
+y1y2-(x0+
p
2
)(y1+y2)+(x0+
p
2
)2
(2分)
x1+x2=3p,x1x2=
p2
4
,y1y2=-p2,y1+y2=2p
(4分)
NA
NB
=2
x
2
0
-4px0-
3
2
p2=2(x0-p)2-
7
2
p2

當(dāng)x0=p時(shí),
NA
NB
的最小值為-
7
2
p2
.                            (6分)
(3)假設(shè)滿足條件的直線l存在,其方程為x=a,
設(shè)CD的中點(diǎn)為O',l與以CD為直徑的圓相交于點(diǎn)P、Q,設(shè)PQ的中點(diǎn)為H,
則O'H⊥PQ,O'點(diǎn)的坐標(biāo)為(
x1+p
2
y1
2
)

|O′P|=
1
2
|CD|=
1
2
(
x
 
1
-p)
2
+y12
=
1
2
x
2
1
+p2
,
|O′H|=|a-
x1+p
2
|=
1
2
|2a-x1-p|
,(2分)
∴|PH|2=|O'P|2-|O'H|2=
1
4
(
x
2
1
+p2)-
1
4
(2a-x1-p)2
=(a-
p
2
)x1+a(p-a)
,
∴|PQ|2=(2|PH|)2=4[(a-
p
2
)x1+a(p-a)]
.                    (5分)
a-
p
2
=0
,得a=
p
2
,此時(shí)|PQ|=p為定值,
故滿足條件的直線l存在,其方程為x=
p
2
,即拋物線的通徑所在的直線. (7分)
點(diǎn)評:此題考查拋物線的定義,及向量坐標(biāo)運(yùn)算等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)斜率為1的直線過拋物線y2=4x的焦點(diǎn),且與拋物線交于兩點(diǎn)A、B.
(1)求|AB|的值;
(2)將直線AB按向量
a
=(-2,0)
平移得直線m,N是m上的動(dòng)點(diǎn),求
NA
NB
的最小值.
(3)設(shè)C(2,0),D為拋物線y2=4x上一動(dòng)點(diǎn),證明:存在一條定直線l:x=a,使得l被以CD為直徑的圓截得的弦長為定值,并求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)計(jì)算
lim
n→∞
2n2+1
3n(n-1)
=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(理)若函數(shù)f(x)=
3x+1  (x≥1)
x-4
x-2
 (x<1).
則f-1(2)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)若f(x)=
x-4x-2
,則f-1(2)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)若直線l經(jīng)過點(diǎn)P(1,2),且法向量為
n
=(3,-4)
,則直線l的方程是
3x-4y+5=0
3x-4y+5=0
(結(jié)果用直線的一般式表示).

查看答案和解析>>

同步練習(xí)冊答案