【題目】 已知函數(shù)(其中為參數(shù)).
(1)當(dāng)時(shí),證明:不是奇函數(shù);
(2)如果是奇函數(shù),求實(shí)數(shù)的值;
(3)已知,在(2)的條件下,求不等式的解集.
【答案】(1)證明見(jiàn)解析;(2)或;(3).
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用奇函數(shù)的定義求解;(2)借助題設(shè)運(yùn)用奇函數(shù)的定義求解;(3)借助題設(shè)運(yùn)用函數(shù)的單調(diào)性求解和探求.
試題解析:
(1),∴,,
∵,∴不是奇函數(shù)………………………………4分
(2)∵是奇函數(shù)時(shí),,
即對(duì)定義域內(nèi)任意實(shí)數(shù)成立,
化簡(jiǎn)整理得關(guān)于的恒等式,
∴,即或………………………………8分
(注:少一解扣1分)
(3)由題意得,∴,易判斷在上遞減,∵,∴,∴,∴,∴,即所求不等式的解集為………………………..14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不等式的解集為.
(1)求的值;
(2)若不等式的解集為,不等式的解集為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位: )和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中,.
(1)根據(jù)散點(diǎn)圖判斷, 與哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤(rùn)與、的關(guān)系為.根據(jù)(2)的結(jié)果要求:年宣傳費(fèi)為何值時(shí),年利潤(rùn)最大?
附:對(duì)于一組數(shù)據(jù), ,…, 其回歸直線的斜率和截距的最小二乘估計(jì)分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線的方程為,求實(shí)數(shù)的值;
(2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:
(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?
(參考公式和計(jì)算結(jié)果:)
(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,
且,,分別為,的中點(diǎn).
(I)求證:平面;
(II)求證:平面平面;
(III)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線上.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線經(jīng)過(guò)點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓過(guò)坐標(biāo)原點(diǎn)且圓心在曲線上.
(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;
(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;
(3)設(shè)直線與(2)中所求圓交于點(diǎn)、, 為直線上的動(dòng)點(diǎn),直線,與圓的另一個(gè)交點(diǎn)分別為,,且,在直線異側(cè),求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com