【題目】為鼓勵居民節(jié)約用水,某市自來水公司對全市用戶采用分段計費的方式計算水費,收費標(biāo)準(zhǔn)如下:不超過的部分為2.20元/;超過不超過的部分為2.80元/;超過部分為3.20元/.
(1)試求居民月水費y(元)關(guān)于用水量的函數(shù)關(guān)系式;
(2)某戶居民4月份用水,應(yīng)交水費多少元?
(3)若有一戶居民5月份水費為57.20元,請問該戶居民5月份用水多少?
(4)若某戶居民6月份、7月份共用水,且6月份水費比7月份水費少12元,則該戶居民6、7月份各用水多少?
【答案】(1)(2)38.8元;(3)22噸;(4)6月16噸,7月20噸
【解析】
(1)根據(jù)的不同取值范圍列出不同的表達(dá)式,得水費函數(shù);
(2)代入解析式可得;
(3)可求出在的不同范圍內(nèi)的取值范圍,然后列式計算;
(4)兩個月共用水36噸,說明一個月比18噸多,一個月比16噸少,但都不會少于10噸,又6月份水費少,因此6月份少于18噸,7月份多于18噸,由此列方程可得.
(1)當(dāng)時,,當(dāng)時,,當(dāng)時,,
綜上,.
(2)時,(元);
(3)由(1)時,,當(dāng)時,,當(dāng)時,,,則,所以(噸);
(4)兩個月共用水36噸,說明一個月比18噸多,一個月比18噸少,
設(shè)6月份用水噸,因為6月份水費少,則,又因為,顯然,
所以,解得.
所以6月份用水16噸.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點,圓:.
(1)當(dāng)直線與圓相切時,求直線的一般方程;
(2)若直線與圓相交,且弦長為,求直線的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,ABCD為菱形,∠ABC=60°,△PAB是邊長為2的等邊三角形,點M為AB的中點,將△PAB沿AB邊折起,使平面PAB⊥平面ABCD,連接PC、PD,如圖2,
(1)證明:AB⊥PC;
(2)求PD與平面ABCD所成角的正弦值
(3)在線段PD上是否存在點N,使得PB∥平面MC?若存在,請找出N點的位置;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解A,B兩班學(xué)生手機上網(wǎng)的時長,分別從這兩個班中隨機抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1) 試估計哪個班級學(xué)生平均上網(wǎng)的時間較長。
(2)從A班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為b,求a>b的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(3)若存在實數(shù),使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了解氣溫對某產(chǎn)品銷售量的影響,隨機記錄了該商店月份中天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位:℃)的數(shù)據(jù),如表所示:
(1)求與的回歸方程:
(2)判斷與之間是正相關(guān)還是負(fù)相關(guān);若該地月份某天的最低氣溫為,請用(1)中的回歸方程預(yù)測該商店當(dāng)日的銷售量.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(I)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:
且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.
在(I)、(II)的條件下,若以“性價比”為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由.
注:(1)產(chǎn)品的“性價比”=;
(2)“性價比”大的產(chǎn)品更具可購買性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com