【題目】已知以點為圓心的圓過點和,線段的垂直平分線交圓于點,且.
(1)求直線的方程;
(2)求圓的方程;
(3)是否存在點在圓上,使得的面積為?若存在,請指出共有幾個這樣的點?說明理由,并求出這些點的坐標.
【答案】(1) (2)或;(3)存在,有兩個點,當時,點坐標為或;當時,點坐標為或
【解析】
(1)由題意知直線垂直平分線段,由的坐標求得所在直線的斜率,可得所在直線的斜率,再由中點坐標公式求得中點坐標,代入直線點斜式方程即得答案;
(2)由題意知線段為圓的直徑,可得.設圓P的方程為,把的坐標代入圓的方程,聯(lián)立求得的值,即可求得圓的方程;
(3)由,當的面積為時,則點到直線的距離為,又因為圓心到直線的距離為,且,可知圓上共有兩個點滿足條件,通過求出的平行直線和圓聯(lián)立即可求出點坐標.
(1)由題意知直線垂直平分線段,
中點坐標,又 ,,
∴直線的方程為,即;
(2)由題意知線段為圓的直徑,
設圓P的方程為,
∵圓經(jīng)過點,
,
解得或.
∴圓的方程為或.
(3),當的面積為時,點到直線的距離為,又因為圓心到直線的距離為,圓的半徑為,且,
圓上共有兩個點,使的面積為18.
點在與直線平行且距離直線的為的直線上,同時圓心到直線的距離為.直線與圓的交點即為所求點.
當時,可求得直線
或,所以此時點坐標為或;
當時,可求得直線
或,所以此時點坐標為或;
科目:高中數(shù)學 來源: 題型:
【題目】某市10000名職業(yè)中學高三學生參加了一項綜合技能測試,從中隨機抽取100名學生的測試成績,制作了以下的測試成績(滿分是184分)的頻率分布直方圖.
市教育局規(guī)定每個學生需要繳考試費100元.某企業(yè)根據(jù)這100000名職業(yè)中學高三學生綜合技能測試成績來招聘員工,劃定的招聘錄取分數(shù)線為172分,且補助已經(jīng)被錄取的學生每個人元的交通和餐補費.
(1)已知甲、乙兩名學生的測試成績分別為168分和170分,求技能測試成績的中位數(shù),并對甲、乙的成績作出客觀的評價;
(2)令表示每個學生的交費或獲得交通和餐補費的代數(shù)和,把用的函數(shù)來表示,并根據(jù)頻率分布直方圖估計的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】問:有多少種不同的方法將集合中的元素歸入三個(有序)集合,使得每個元素至少含于其中一個集合之中,這三個集合的交是空集,而其中任兩個集合的交都不是空集?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中為了選拔學生參加“全國高中數(shù)學聯(lián)賽”,先在本校進行初賽(滿分150分),隨機抽取100名學生的成績作為樣本,并根據(jù)他們的初賽成績得到如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線 y = x3 + x-2 在點 P0 處的切線平行于直線
4x-y-1=0,且點 P0 在第三象限,
⑴求P0的坐標;
⑵若直線, 且 l 也過切點P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在的偶函數(shù),且.當時,,若方程有300個不同的實數(shù)根,則實數(shù)m的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直.
(1)求的單調(diào)區(qū)間;
(2)設,對任意,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com