【題目】甲、乙兩人做下面的游戲:有一個由兩個同軸圓柱組成的有蓋容器,如圖,里面的實(shí)心圓柱底面半徑為,外面的圓柱面的底面半徑為,容器的高為。在容器內(nèi)放入個半徑為且質(zhì)地相同的小球,其中紅、黃、藍(lán)色各個,隨意翻動容器,然后將容器直立在桌面上。當(dāng)小球全部停止后,如果有兩個顏色相同的小球相鄰,則甲勝,否則乙勝。那么,甲勝的概率為()。

A. B. C. D.

【答案】D

【解析】

記兩個紅球?yàn)?/span>、,兩個藍(lán)球?yàn)?/span>、,兩個黃球?yàn)?/span>,在圓周上按逆時針方向排列著個位置,依次編號為.則題中的實(shí)驗(yàn)等價于將個球隨機(jī)地安排在個位置上,每個位置上一個球,任何一個球安排到任何一個位置上的可能性都是一樣的.

由對稱性,不妨設(shè)號位,記為.于是,個球任意排列,共有種可能.

考察其中任何相鄰個球不同色的情形:

(1)若,則號位可排、,有種排法.再考察號位,若它與號位同色,則、號位同色,矛盾.所以,號位與號位不同色,有種排法,此時,、號位只有唯一排法.從而,有種排法.

(2)若,由對稱性,同樣有種排法.

(3)若,則號位可排、,有種排法,號位有種排法(排最后一種顏色),此時,號位有種排法,號位有唯一排法,從而,有種排法.

所以,一共有種排法.

綜上所述,甲勝的概率是.

故答案為:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率是橢圓上一點(diǎn).

1)求橢圓的方程;

2)若直線的斜率為,且直線交橢圓、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的直角坐標(biāo)方程為.

1)求的極坐標(biāo)方程;

2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時有效地對疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計分析,某地研究機(jī)構(gòu)針對該地實(shí)際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關(guān)數(shù)據(jù):

1)請將列聯(lián)表填寫完整,并判斷能否在犯錯誤的概率不超過0.01的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?

有接觸史

無接觸史

總計

有武漢旅行史

4

無武漢旅行史

10

總計

25

45

2)已知在無武漢旅行史的10名患者中,有2名無癥狀感染者.現(xiàn)在從無武漢旅行史的10名患者中,選出2名進(jìn)行病例研究,記選出無癥狀感染者的人數(shù)為,求的分布列以及數(shù)學(xué)期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登山健身的活動,有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,,,等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.

(1)根據(jù)此頻率分布直方圖求該校參加秋季登山活動的教職工年齡的中位數(shù);

(2)已知這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學(xué)老師的概率;

(3)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為,求的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交、.為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.

1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,平面平面,四邊形是菱形,.

(1)求證:;

(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求在圖所示的的方格中“圈”的個數(shù).在這里,一條封閉的折線叫做圈,如果這條折線的邊均由方格的邊組成,且折線經(jīng)過的任意一個方格頂點(diǎn)都只與折線的兩條邊相連.

查看答案和解析>>

同步練習(xí)冊答案