【題目】定義在的函數(shù)的導(dǎo)函數(shù)為.

證明:(1)在區(qū)間存在唯一極小值點;

2有且僅有2個零點.

【答案】(1)證明見解析

(2)證明見解析

【解析】

(1)由題,再求導(dǎo)利用零點存在定理證明即可.

(2)(1)可得在區(qū)間存在唯一極小值點,再根據(jù)零點存在定理證明即可.

解:(1),則,

因為均為增函數(shù),故為增函數(shù),

,,結(jié)合零點存在性定理知:存在唯一使得,

,;若,;故在區(qū)間存在唯一極小值點.

(2)由(1)可知在區(qū)間存在唯一極小值點,所以,

,,結(jié)合零點存在性定理知:存在唯一使得,

存在唯一使得,故當(dāng)時,,當(dāng)時,,

為增函數(shù),在為減函數(shù),則

,由零點存在性定理:存在唯一使得,

故函數(shù)有且僅有兩個零點;

當(dāng)時,,則,故函數(shù)沒有零點;

綜上所述,有且僅有2個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際羽毛球比賽規(guī)則從20065月開始,正式?jīng)Q定實行21分的比賽規(guī)則和每球得分制,并且每次得分者發(fā)球,所有單項的每局獲勝分至少是21分,最高不超過30分,即先到21分的獲勝一方贏得該局比賽,如果雙方比分為時,獲勝的一方需超過對方2分才算取勝,直至雙方比分打成時,那么先到第30分的一方獲勝.在一局比賽中,甲發(fā)球贏球的概率為,甲接發(fā)球贏球的概率為,則在比分為,且甲發(fā)球的情況下,甲以贏下比賽的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)R).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)若對任意實數(shù),當(dāng)時,函數(shù)的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項均為正數(shù)的數(shù)列的前項和為,已知,且對一切都成立.

(1)當(dāng).

①求數(shù)列的通項公式;

②若,求數(shù)列的前項的和;

(2)是否存在實數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問某地100名高中學(xué)生在選擇座位時是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計

挑同桌

30

40

70

不挑同桌

20

10

30

總計

50

50

100

1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5名學(xué)生中隨機選取3名做深度采訪,求這3名學(xué)生中恰有2名挑同桌的概率;

2)根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為性別與在選擇座位時是否挑同桌有關(guān)?

下面的臨界值表供參考:

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中e為自然對數(shù)的底).

1)若上單調(diào)遞增,求實數(shù)a的取值范圍;

2)若,證明:存在唯一的極小值點,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是中國成立70周年,也是全面建成小康社會的關(guān)鍵之年.為了迎祖國70周年生日,全民齊心奮力建設(shè)小康社會,某校特舉辦喜迎國慶,共建小康知識競賽活動.下面的莖葉圖是參賽兩組選手答題得分情況,則下列說法正確的是(

A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)

C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)試討論函數(shù)的單調(diào)性;

2)若,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗960人的血樣進(jìn)行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.

方案①:將每個人的血分別化驗,這時需要驗960.

方案②:按個人一組進(jìn)行隨機分組,把從每組個人抽來的血混合在一起進(jìn)行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血就只需檢驗一次(這時認(rèn)為每個人的血化驗一次);否則,若呈陽性,則需對這個人的血樣再分別進(jìn)行一次化驗.這樣,該組個人的血總共需要化驗.

假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.

1)設(shè)方案②中,某組個人中每個人的血化驗次數(shù)為,求的分布列;

2)設(shè).試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).

查看答案和解析>>

同步練習(xí)冊答案