【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+ asinC﹣b﹣c=0.
(1)求角A;
(2)若a=2,△ABC的面積為 ,求b,c.
【答案】
(1)解:△ABC中,∵acosC+ asinC﹣b﹣c=0,
利用正弦定理可得sinAcosC+ sinAsinC=sinB+sinC=sin(A+C)+sinC,
化簡可得 sinA﹣cosA=1,∴sin(A﹣30°)= ,
∴A﹣30°=30°,∴A=60°.
(2)解:若a=2,△ABC的面積為 bcsinA= bc= ,∴bc=4 ①.
再利用余弦定理可得a2=4=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣34,
∴b+c=4 ②.
結(jié)合①②求得b=c=2.
【解析】(1)根據(jù)條件,由正弦定理可得sinAcosC+ sinAsinC=sinB+sinC=sin(A+C)+sinC,化簡可得sin(A﹣30°)= ,由此求得A的值.(2)若a=2,由△ABC的面積 ,求得bc=4 ①;再利用余弦定理可得 b+c=4 ②,結(jié)合①②求得b和c的值.
【考點精析】通過靈活運用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一同學(xué)在電腦中打出如下若干個圓:○●○○●○○○●○○○○●○○○○○●…,若依此規(guī)律繼續(xù)下去,得到一系列的圓,則在前2012個圓中共有●的個數(shù)是( )
A.61
B.62
C.63
D.64
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù);命題q:當(dāng)x∈[,2]時,函數(shù)f(x)=x+> 恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 為偶函數(shù).
(1)求實數(shù)a的值;
(2)記集合E={y|y=f(x),x∈{﹣1,1,2}},λ=(lg 2)2+lg 2lg 5+lg 5﹣ ,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[ , ](m>0,n>0)時,若函數(shù)f(x)的值域為[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)所給條件求直線的方程:
(1)直線過點(﹣4,0),傾斜角的正弦值為 ;
(2)直線過點(﹣2,1),且到原點的距離為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點A(4,﹣6),B(﹣4,0),C(﹣1,4),求:
(1)BC邊的垂直平分線EF的方程;
(2)AB邊的中線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
討論函數(shù)的單調(diào)性;
設(shè)函數(shù)的最小值為,且關(guān)于的方程恰有兩個不同的根,求實數(shù)的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com