已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿(mǎn)足,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

(Ⅰ)  ; ;(Ⅱ) .

解析試題分析:(Ⅰ)利用當(dāng)時(shí),  求關(guān)系式,根據(jù)遞推公式從而得通項(xiàng)公式(注意驗(yàn)證首項(xiàng)),易得數(shù)列的通項(xiàng)公式;(Ⅱ)先分為奇數(shù)、偶數(shù)兩種情況化簡(jiǎn),再根據(jù)特征求.
試題解析:(Ⅰ)當(dāng),;  當(dāng)時(shí), ,∴ ,  
是等比數(shù)列,公比為2,首項(xiàng), ∴ 
,得是等差數(shù)列,公差為2 ,又首項(xiàng),∴ .
(Ⅱ)   ,
.
考點(diǎn):1、遞推公式;2、等差數(shù)列、等比數(shù)列的通項(xiàng)和前項(xiàng)和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等差數(shù)列的各項(xiàng)均為正數(shù),,前項(xiàng)和為,為等比數(shù)列, ,且 
(1)求;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,前n項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列前n項(xiàng)和為,比較與2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是公差大于零的等差數(shù)列,已知,.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由;
(3)若,,求證:使得,成等差數(shù)列的點(diǎn)列在某一直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿(mǎn)足:的前項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,數(shù)列的前n項(xiàng)和
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè), 求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列、滿(mǎn)足,且,其中為數(shù)列的前項(xiàng)和,又,對(duì)任意都成立。
(1)求數(shù)列、的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等差數(shù)列的前項(xiàng)和,且.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案