(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個(gè)內(nèi)角為arccos
7
9
,周長為定值p,求面積S的最大值;
(3)為了研究邊長a、b、c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,則應(yīng)使sinC最大,即使∠C最大,也就是使∠C所對的邊c邊長最大,所以,當(dāng)a?9,b?8,c?4時(shí)該三角形面積最大,此時(shí)cosC=
43
48
,sinC=
455
48
,所以,該三角形面積的最大值是
3
455
4
.以上解答是否正確?若不正確,請你給出正確的解答.
(1)設(shè)直角三角形兩直角邊長分別為x、12-x,斜邊長為y,則 y=
x2+(12-x)2
=
2(x-6)2+72
≥6
2
,
∴兩直角邊長都為6時(shí),周長p的最小值為 12+6
2

 (2)設(shè)三角形中邊長為x、y的兩邊所夾的角為 arccos
7
9
,則周長p=x+y+
x2+y2-2xy•
7
9
,
p≥2
xy
+
2xy-
14
9
xy
=
8
3
xy
,即 xy≤
9
64
p2

又S=
1
2
xysin(arccos
7
9
)=
2
2
9
xy≤
2
32
p2
,∴面積S的最大值為
2
32
p2

(3)不正確.16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(b+c)2-a2][a2-(b-c)2]
=-a4+2(b2+c2)a2-(b2-c22=-[a2-(b2+c2)]2+4b2c2,
而-[a2-(b2+c2)]2≤0,b2≤64,c2≤16,則S≤16.
其中等號(hào)成立的條件是 a2=b2+c2,b=8,c=4,則 a=4
5

∴當(dāng)三角形的邊長a、b、c 分別為 4
5
,8,4
的直角三角形時(shí),其面積取得最大值16.
( 另S=
1
2
bcsinA≤
1
2
•8•4•sin90°=16
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2005•上海模擬)(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個(gè)內(nèi)角為arccos
7
9
,周長為定值p,求面積S的最大值;
(3)為了研究邊長a、b、c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,則應(yīng)使sinC最大,即使∠C最大,也就是使∠C所對的邊c邊長最大,所以,當(dāng)a?9,b?8,c?4時(shí)該三角形面積最大,此時(shí)cosC=
43
48
sinC=
455
48
,所以,該三角形面積的最大值是
3
455
4
.以上解答是否正確?若不正確,請你給出正確的解答.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海模擬)(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個(gè)內(nèi)角為arccos
79
,周長為定值p,求面積S的最大值;
(3)為了研究邊長a,b,c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(a+b)2-c2][c2-(a-b)2]=-c4+2(a2+b2)c2-(a2-b22=-[c2-(a2+b2)]2+4a2b2
而-[c2-(a2+b2)]2≤0,a2≤81,b2≤64,則S≤36,但是,其中等號(hào)成立的條件是c2=a2+b2,a=9,b=8,于是c2=145與3≤c≤4矛盾,所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
(注:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)稱為三角形面積的海倫公式,它已經(jīng)被證明是正確的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004-2005學(xué)年上海市十校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個(gè)內(nèi)角為,周長為定值p,求面積S的最大值;
(3)為了研究邊長a,b,c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(a+b)2-c2][c2-(a-b)2]=-c4+2(a2+b2)c2-(a2-b22=-[c2-(a2+b2)]2+4a2b2
而-[c2-(a2+b2)]2≤0,a2≤81,b2≤64,則S≤36,但是,其中等號(hào)成立的條件是c2=a2+b2,a=9,b=8,于是c2=145與3≤c≤4矛盾,所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
(注:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)稱為三角形面積的海倫公式,它已經(jīng)被證明是正確的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年上海市十校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個(gè)內(nèi)角為,周長為定值p,求面積S的最大值;
(3)為了研究邊長a,b,c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(a+b)2-c2][c2-(a-b)2]=-c4+2(a2+b2)c2-(a2-b22=-[c2-(a2+b2)]2+4a2b2
而-[c2-(a2+b2)]2≤0,a2≤81,b2≤64,則S≤36,但是,其中等號(hào)成立的條件是c2=a2+b2,a=9,b=8,于是c2=145與3≤c≤4矛盾,所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
(注:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)稱為三角形面積的海倫公式,它已經(jīng)被證明是正確的)

查看答案和解析>>

同步練習(xí)冊答案