已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦長為
(Ⅰ)求p的值;
(Ⅱ)若直角三角形ABC的三個頂點在拋物線L上,且直角頂點B的橫坐標(biāo)為1,過點A、C分別作拋物線L的切線,兩切線相交于點D,直線AC與y軸交于點E,當(dāng)直線BC的斜率在[3,4]上變化時,直線DE斜率是否存在最大值,若存在,求其最大值和直線BC的方程;若不存在,請說明理由.

【答案】分析:(Ⅰ)聯(lián)立方程組,利用弦長公式,直接求出p的值;
(Ⅱ)設(shè)A(),C(),設(shè)BC的斜率為k,,求出kAC,得到直線AC的方程,求出ED的斜率,利用函數(shù)的單調(diào)性求出斜率AD的最大值,求出BC的方程.
解答:(Ⅰ)  解:由解得A(0,0),B(2p,2p)…2分
=AB=,
∴p=  …5分
(Ⅱ) 解:B(1,1),設(shè)A(),C(),=x1+x2,
設(shè)BC的斜率為k,則⇒x2-kx+k-1=0,
△=k2-4k+4≥0,
又1+x2=k⇒x2=k-1,C(k-1,(k-1)2),,
kAC=x1+x2=k--2,
直線AC的方程為y-(k-1)2=(k--2)[x-(k-1)],
令x=0,y=k-,所以E(0,k-),
AD:y-=2x1(x-x1)⇒y=2x1x-
同理CD:y=2x2x-,
聯(lián)立兩方程得D((k--2),),
kED====-4,
令u=-k,在[3,4]遞減,所以,當(dāng)k=4時,kED最大為,
所以,BC的方程為y-1=4(x-1)即4x-y-3=0…12分
點評:本題是中檔題,考查直線與圓錐曲線方程的綜合問題,設(shè)而不求的思想,韋達(dá)定理的應(yīng)用,函數(shù)的單調(diào)性等知識,考查計算能力轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦|AB|=4
2

(1)求p的值;
(2)拋物線L上是否存在異于點A、B的點C,使得經(jīng)過A、B、C三點的圓和拋物線L在點C處有相同的切線.若存在,求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦長為
2

(Ⅰ)求p的值;
(Ⅱ)若直角三角形ABC的三個頂點在拋物線L上,且直角頂點B的橫坐標(biāo)為1,過點A、C分別作拋物線L的切線,兩切線相交于點D,直線AC與y軸交于點E,當(dāng)直線BC的斜率在[3,4]上變化時,直線DE斜率是否存在最大值,若存在,求其最大值和直線BC的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期末題 題型:解答題

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦
(1)求p的值;
(2)拋物線L上是否存在異于點A、B的點C,使得經(jīng)過A、B、C三點的圓和拋物線L在點C處有相同的切線.若存在,求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L的方程為,直線截拋物線L所得弦長為

(Ⅰ)求p的值;

(Ⅱ)若直角三角形的三個頂點在拋物線L上,且直角頂點的橫坐標(biāo)為1,過點分別作拋物線L的切線,兩切線相交于點,直線軸交于點,當(dāng)直線的斜率在上變化時,直線斜率是否存在最大值,若存在,求其最大值和直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省天一中學(xué)、海門中學(xué)、鹽城中學(xué)聯(lián)考高三(下)2月調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦
(1)求p的值;
(2)拋物線L上是否存在異于點A、B的點C,使得經(jīng)過A、B、C三點的圓和拋物線L在點C處有相同的切線.若存在,求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案