【題目】在圓內(nèi)有一點,為圓上一動點,線段的垂直平分線與的連線交于點

(Ⅰ)求點的軌跡方程.

(Ⅱ)若動直線與點的軌跡交于兩點,且以為直徑的圓恒過坐標原點.問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.

【答案】(Ⅰ)(Ⅱ)存在定圓總與直線相切

【解析】

由點在線段的上,結(jié)合垂直平分線的性質(zhì)可得從而由橢圓的定義可得結(jié)果;直線斜率不存在時,原點到直線的距離為直線斜率存在時,可設(shè)直線的方程為,解消去得方程:利用向量垂直數(shù)量積為零,結(jié)合韋達定理可得由點點直線距離公式可得原點到直線的距離,進而可得結(jié)果.

(Ⅰ)圓的圓心為,半徑為

在線段的垂直平分線上

在線段的上

由橢圓的定義可知點的軌跡是以,為焦點,長軸長為的橢圓,

,故點的軌跡方程為

(Ⅱ)假設(shè)存在這樣的圓.設(shè), .

由已知,以為直徑的圓恒過原點,即,所以.

當直線垂直于軸時, , ,所以,又,解得

不妨設(shè), , ,即直線的方程為,此時原點到直線的距離為.

當直線的斜率存在時,可設(shè)直線的方程為,解消去得方程: 因為直線與橢圓交于, 兩點,所以方程的判別式

,且, .

,得 ,

所以整理得(滿足).

所以原點到直線的距離.

綜上所述,原點到直線的距離為定值,即存在定圓總與直線相切.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校研究性學習小組對該校高三學生視力情況進行調(diào)查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,得到如圖的頻率分布直方圖(圖1.

1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);

2)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關(guān)系,對年級名次在150名和9511000名的學生進行了調(diào)查,得到圖2中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過0.05的前提下認為視力與學習成績有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。

求證:(1)PA∥平面BDE ;

(2)平面PAC平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列描述中不正確的是( )

A. 與去年同期相比2018年第一季度五個省的GDP總量均實現(xiàn)了增長

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP總量不超過4000億元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a>0,且a≠1,函數(shù)ya2x2ax1[1,1]上的最大值是14,則實數(shù)a的值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為.

(1)若拋物線的焦點到準線的距離為4,直線,求直線截拋物線所得的弦長;

(2)過點的直線交拋物線兩點,過點作拋物線的切線,兩切線相交于點,若分別表示直線與直線的斜率,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點為參數(shù)).以為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(1)求點的軌跡的方程及直線的直角坐標方程;

(2)求曲線上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地4個蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上,這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭相購買的對象,過去50周的資料顯示,該地周光照量小時都在30以上,其中不足50的周數(shù)大約5周,不低于50且不超過70的周數(shù)大約有35周,超過70的大約有10周,根據(jù)統(tǒng)計某種改良黃瓜每個蔬菜大棚增加量百斤與每個蔬菜大棚使用農(nóng)夫1號液體肥料千克之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖.

(1)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個蔬菜大鵬增加量是多少斤?

(2)因蔬菜大棚對光照要求較大,某光照控制儀商家為應(yīng)對惡劣天氣對光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運行,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關(guān)系:

周光照量單位:小時

30<X<50

光照控制儀最多可運行臺數(shù)

3

2

1

若某臺光照控制儀運行,則該臺光照儀周利潤為4000元;若某臺光照儀未運行,則該臺光照儀周虧損500元,欲使商家周總利潤的均值達到最大,應(yīng)安裝光照控制儀多少臺?

附:回歸方程系數(shù)公式: , .

查看答案和解析>>

同步練習冊答案