【題目】在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E,F分別為A1B1 , B1C1的中點,則直線BE與直線CF所成角的余弦值是 .
【答案】
【解析】解:∵在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E,F分別為A1B1 , B1C1的中點,
∴以A為原點,AB為x軸,AC為y軸,AA1為z軸,建立空間直角坐標系,
B(2,0,0),E(1,0,2),C(0,2,0),B1(2,0,2),C1(0,2,2),F(1,1,2),
=(﹣1,0,2), =(1,﹣1,2),
設異面直線BE與直線CF所成角為θ,
則cosθ= = = .
∴直線BE與直線CF所成角的余弦值是 .
所以答案是: .
【考點精析】根據題目的已知條件,利用異面直線及其所成的角的相關知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現兩條異面直線間的關系.
科目:高中數學 來源: 題型:
【題目】已知全集U=R,集合A={x|0<log2x<2},B={x|x≤3m﹣4或x≥8+m}(m<6).
(1)若m=2,求A∩(UB);
(2)若A∩(UB)=,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的離心率 ,過點A(0,﹣b)和B(a,0)的直線與原點的距離為 .
(1)求橢圓的方程;
(2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為2 的正方體ABCD﹣A1B1C1D1中,M是A1B1的中點,點P是側面CDD1C1上的動點,且MP∥截面AB1C,則線段MP長度的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,半徑為1,圓心角為 的圓弧 上有一點C.
(1)若C為圓弧AB的中點,點D在線段OA上運動,求| + |的最小值;
(2)若D,E分別為線段OA,OB的中點,當C在圓弧 上運動時,求 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點M(﹣2,0)的直線l與橢圓x2+2y2=2交于P1 , P2 , 線段P1P2的中點為P.設直線l的斜率為k1(k1≠0),直線OP的斜率為k2 , 則k1k2等于( )
A.﹣2
B.2
C.
D.﹣
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sinxcosx+sin2x﹣ .
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設函數g(x)=f( + ),其中常數ω>0,|φ|< . (i)當ω=4,φ= 時,函數y=g(x)﹣4λf(x)在[ , ]上的最大值為 ,求λ的值;
(ii)若函數g(x)的一個單調減區(qū)間內有一個零點﹣ ,且其圖象過點A( ,1),記函數g(x)的最小正周期為T,試求T取最大值時函數g(x)的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com