【題目】動點(diǎn)A(x , y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是 ,則當(dāng)0≤t≤12時(shí),動點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是(
A.[0,1]
B.[1,7]
C.[7,12]
D.[0,1]和[7,12]

【答案】D
【解析】解答:設(shè)動點(diǎn)A與x軸正方向夾角為α,則t=0時(shí) ,每秒鐘旋轉(zhuǎn) ,在t∈[0,1]上 ,在[7,12]上 ,動點(diǎn)A的縱坐標(biāo)y關(guān)于t都是單調(diào)遞增的.故選D.
分析:由動點(diǎn)A(x , y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),可知與三角函數(shù)的定義類似,由12秒旋轉(zhuǎn)一周能求每秒鐘所轉(zhuǎn)的弧度,畫出單位圓,很容易看出,當(dāng)t在[0,12]變化時(shí),點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)性的變化,從而得單調(diào)遞增區(qū)間.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法的相關(guān)知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長均為2,平面平面 , 的中點(diǎn).

(1)證明: ;

(2)若是棱的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+ +4,(a≠0,b≠0),則f(2)+f(﹣2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海南省椰樹集團(tuán)引進(jìn)德國凈水設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(千元)的幾組統(tǒng)計(jì)數(shù)據(jù)如表:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 關(guān)于x的線性回歸方程
(2)我們把中(1)的線性回歸方程記作模型一,觀察散點(diǎn)圖發(fā)現(xiàn)該組數(shù)據(jù)也可以用函數(shù)模型 =c1ln(c2x)擬合,記作模型二.經(jīng)計(jì)算模型二的相關(guān)指數(shù)R2=0.64,
①請說明R2=0.64這一數(shù)據(jù)在線性回歸模型中的實(shí)際意義.
②計(jì)算模型一中的R2的值(精確到0.01),通過數(shù)據(jù)說明,兩種模型中哪種模型的擬合效果好.
參考公式和數(shù)值:用最小工乘法求線性回歸方程系數(shù)公式 = , .R2=1﹣ =0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,2),函數(shù)g(x)=f(x﹣1)+f(3﹣2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù)且在定義域內(nèi)單調(diào)遞減,求不等式g(x)≤0的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知數(shù)列{an}是等差數(shù)列,且a1,a2(a1<a2)分別為方程x2﹣6x+5=0的二根.

(1)求數(shù)列{an}的前n項(xiàng)和Sn;

(2)在(1)中,設(shè)bn=,求證:當(dāng)c=﹣時(shí),數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx+ax2﹣ax+5,a∈R.
(1)若函數(shù)f(x)在x=1處有極值,求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知動圓恒過且與直線相切,動圓圓心的軌跡記為;直線軸的交點(diǎn)為,過點(diǎn)且斜率為的直線與軌跡有兩個(gè)不同的公共點(diǎn) , 為坐標(biāo)原點(diǎn).

(1)求動圓圓心的軌跡的方程,并求直線的斜率的取值范圍;

(2)點(diǎn)是軌跡上異于, 的任意一點(diǎn),直線, 分別與過且垂直于軸的直線交于 ,證明: 為定值,并求出該定值;

(3)對于(2)給出一般結(jié)論:若點(diǎn),直線,其它條件不變,求的值(可以直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案