精英家教網 > 高中數學 > 題目詳情

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.
(1)完成下面的列聯表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關.

平均車速超過
100km/h人數

平均車速不超過
100km/h人數

合計

男性駕駛員人數

女性駕駛員人數

合計


(2)以上述數據樣本來估計總體,現從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數為 ,若每次抽取的結果是相互獨立的,求 的分布列和數學期望.
參考公式與數據: ,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】
(1)解:

平均車速超過100km/h人數

平均車速不超過100km/h人數

合計

男性駕駛員人數

40

15

55

女性駕駛員人數

20

25

45

合計

60

40

100

因為 ,所以有99.5%的把握認為平均車速超過100km/h與性別有關


(2)解:根據樣本估計總體的思想,從高速公路上行駛的大量家用轎車中隨機抽取1輛,駕駛員為男性且車速超過100km/h的車輛的概率為

可取值是0,1,2,3, ,有:

,

,

,

分布列為

0

1

2

3


【解析】(1)根據題中的已知數據完成列表求出觀測值與標準值進行比較得出結論。(2)根據題意可得X的取值為0、1、2、3利用獨立事件的概率公式求出X的分布列,再把數值代入到數學期望公式求出結果即可。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術改造后在生產A產品過程中記錄的產量x(噸)與相應的生產能耗y(噸)的幾組對應數據,根據表提供的數據,求出y關于x的線性回歸方程為 =0.7x+0.35,則下列結論錯誤的是(

x

3

4

5

6

y

2.5

t

4

4.5


A.產品的生產能耗與產量呈正相關
B.t的取值必定是3.15
C.回歸直線一定過點(4,5,3,5)
D.A產品每多生產1噸,則相應的生產能耗約增加0.7噸

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+2|+|x|
(1)解不等式f(x)≤4;
(2)若對x∈R,恒有f(x)>|3a﹣1|成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,判斷函數的奇偶性并證明;

(2)討論的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把函數 的圖象上所有點的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變),再把所得圖象上所有點向左平移 個單位長度,得到圖象的函數解析式為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知α,β是平面,m,n是直線.下列命題中不正確的是 ( )
A.若m∥n,m⊥α,則n⊥α
B.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥β
D.若m⊥α, ,則α⊥β

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學用“描點法”畫函數在區(qū)間上的圖象時,列表并填入了部分數據,如下表:

(1)請將上表數據補充完整,并在給出的直角坐標系中,畫出在區(qū)間上的圖象;

(2)利用函數的圖象,直接寫出函數上的單調遞增區(qū)間;

(3)將圖象上所有點向左平移個單位長度,得到的圖象,若

圖象的一個對稱中心為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“共享單車”的出現,為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的 城市和交通擁堵嚴重的 城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):

合計

認可

不認可

合計

(Ⅰ)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據此樣本完成此 列聯表,并據此樣本分析是否有 的把握認為城市擁堵與認可共享單車有關;
(Ⅱ)若從此樣本中的 城市和 城市各抽取1人,則在此2人中恰有一人認可的條件下,此人來自 城市的概率是多少?
附:參考數據:(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的奇函數f(x)滿足f(x﹣2)=f(x+2),且當x∈[﹣2,0]時,f(x)=3x﹣1,則f(9)=(
A.﹣2
B.2
C.
D.

查看答案和解析>>

同步練習冊答案