【題目】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0]上單調(diào)遞增,若實數(shù)a滿足f(log2|a﹣1|)>f(﹣2),則a的取值范圍是_____

【答案】

【解析】

由題可得f(x)在[0,+∞)上為減函數(shù),結合函數(shù)的奇偶性可將f(log2|a﹣1|)>f(﹣2)轉化為﹣2<log2|a﹣1|<2,解不等式可得a的取值范圍.

已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0]上單調(diào)遞增,

f(x)在[0,+∞)上為減函數(shù),

∴f(log2|a﹣1|)>f(﹣2)f(|log2|a﹣1||)>f(2)

|log2|a﹣1||<2﹣2<log2|a﹣1|<2,

<|a﹣1|<4,

解得:﹣3<a<<a<5,

即不等式的解集為(﹣3,)∪(,5);

故答案為(﹣3,)∪(,5).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點.

(1)證明:平面;

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一商場對5年來春節(jié)期間服裝類商品的優(yōu)惠金額(單位:萬元)與銷售額(單位:萬元)之間的關系進行分析研究并做了記錄,得到如下表格.

日期

2014

2015

2016

2017

2018

2

4

5

6

8

30

40

60

50

70

(1)畫出散點圖,并判斷服裝類商品的優(yōu)惠金額與銷售額是正相關還是負相關;

(2)根據(jù)表中提供的數(shù)據(jù),求出的回歸方程;

(3)若2019年春節(jié)期間商場預定的服裝類商品的優(yōu)惠金額為10萬元,估計該商場服裝類商品的銷售額.

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l方程為m+2x﹣(m+1y3m70,m∈R

1)求證:直線l恒過定點P,并求出定點P的坐標;

2)若直線lx軸,y軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面上給定及點,構造點列,,…,使得為點繞中心順時針旋轉時所到達的位置,而為點分別繞中心順時針旋轉時所到達的位置,.若對某個,有,試求的各個內(nèi)角的度數(shù)及三個頂點,,的排列方向.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

1)若圓的切線軸、軸上的截距相等,求切線的方程;

2)若點是圓C上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意實數(shù),定義設函數(shù),,則函數(shù)的最大值是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M與直線相切于點,圓心Mx軸上.

(1)求圓M的方程;

(2)過點M且不與x軸重合的直線與圓M相交于A,B兩點,O為坐標原點,直線OAOB分別與直線x=8相交于C,D兩點,記△OAB、△OCD的面積分別是S1、S2.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】元宵節(jié)燈展后,如圖懸掛有6盞不同的花燈需要取下,每次取1盞,共有__________種不同取法.(用數(shù)字作答)

查看答案和解析>>

同步練習冊答案