(12分)2009年,福特與浙江吉利就福特旗下的沃爾沃品牌業(yè)務的出售在商業(yè)條款上達成一致,據(jù)專家分析,浙江吉利必須完全考慮以下四個方面的挑戰(zhàn):第一個方面是企業(yè)管理,第二個方面是汽車制造技術,第三個方面是汽車銷售,第四個方面是人才培養(yǎng).假設以上各種挑戰(zhàn)各自獨立,并且只要第四項不合格,或第四項合格且前三項中至少有兩項不合格,企業(yè)將破產(chǎn),若第四項挑戰(zhàn)失敗的概率為,其他三項挑戰(zhàn)失敗的概率分別為.
(1)求浙江吉利不破產(chǎn)的概率;
(2)專家預測:若四項挑戰(zhàn)均成功,企業(yè)盈利15億美元;若第一、第二、第三項挑戰(zhàn)中僅有一項不成功且第四項挑戰(zhàn)成功,企業(yè)盈利5億美元;若企業(yè)破產(chǎn),企業(yè)將損失10億美元.設浙江吉利并購后盈虧為X億美元,求隨機變量X的期望.
(1)不破產(chǎn)的概率1-=;(2)EX=15+5-10= 
本試題主要是考查了獨立事件概率的乘法公式,以及互斥事件的概率的求解,以及隨機變量分布列的計算和數(shù)學期望值的綜合運用。
(1)利用破產(chǎn)的情況,對于假設以上各種挑戰(zhàn)各自獨立,并且只要第四項不合格,或第四項合格且前三項中至少有兩項不合格,企業(yè)將破產(chǎn),分情況討論即可
(2)先分析x可能的取值15 ,  5 ,  -10
然后求解各個取值的概率值,得到分布列和期望值。
解:(1)第四項失敗的概率,其他三項失敗的概率
破產(chǎn)的概率=+[()] =+[] =………4分
不破產(chǎn)的概率1-=………6分
(2)x可能的取值15 ,  5 ,  -10………7分
P(x="15)=" ()===……9分
P(x="5)=" [C()]=3==……11分
P(x=-10)==
EX=15+5-10=……12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
現(xiàn)有兩個項目,投資項目萬元,一年后獲得的利潤為隨機變量(萬元),根據(jù)市場分析,的分布列為:

投資項目萬元,一年后獲得的利潤(萬元)與項目產(chǎn)品價格的調整(價格上調或下調)有關, 已知項目產(chǎn)品價格在一年內進行次獨立的調整,且在每次調整中價格下調的概率都是.
經(jīng)專家測算評估項目產(chǎn)品價格的下調與一年后獲得相應利潤的關系如下表:

(Ⅰ)求的方差;
(Ⅱ)求的分布列;
(Ⅲ)若,根據(jù)投資獲得利潤的差異,你愿意選擇投資哪個項目?
(參考數(shù)據(jù):).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在平面內,不等式確定的平面區(qū)域為,不等式組確定的平面區(qū)域為.
(Ⅰ)定義橫、縱坐標為整數(shù)的點為“整點”. 在區(qū)域任取3個整點,求這些整點中恰有2個整點在區(qū)域的概率;
(Ⅱ)在區(qū)域每次任取個點,連續(xù)取次,得到個點,記這個點在區(qū)域的個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某大樓共5層,4個人從第一層上電梯,假設每個人都等可能地在每一層下電梯,并且他們下電梯與否相互獨立. 又知電梯只在有人下時才停止.
(Ⅰ)求某乘客在第層下電梯的概率 ;
(Ⅱ)求電梯在第2層停下的概率;
(Ⅲ)求電梯停下的次數(shù)的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

口袋中有5只球,編號為1,2,3,4,5,從中任取3球,以表示取出的球的最大號碼,則(     )
A. 4B. 5C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

隨機抽取某廠的某種產(chǎn)品200件,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而生產(chǎn)1件次品虧損2萬元,設一件產(chǎn)品獲得的利潤為X(單位:萬元).
(1)求X的分布列;
(2)求1件產(chǎn)品的平均利潤(即X的數(shù)學期望);
(3)經(jīng)技術革新后,仍有四個等級的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時要求生產(chǎn)1件產(chǎn)品獲得的平均利潤不小于4.73萬元,則三等品率最多是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
一個袋子中裝有大小形狀完全相同的編號分別為1,2,3,4,5的5個紅球與編號為1,2,3,4的4個白球,從中任意取出3個球.
(Ⅰ)求取出的3個球顏色相同且編號是三個連續(xù)整數(shù)的概率;
(Ⅱ)求取出的3個球中恰有2個球編號相同的概率;
(Ⅲ)記X為取出的3個球中編號的最大值,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列是隨機變量ξ的分布列







x
則隨機變量ξ的數(shù)學期望是
A.0.44                B.0.52            C.1.40        D.條件不足

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

現(xiàn)有大小形狀完全相同的標號為i 的i 個球(i = 1,2,3),現(xiàn)從中隨機取出2 個球,記取出的這兩個球的標號數(shù)之和為,則隨機變量的數(shù)學期望E =              .

查看答案和解析>>

同步練習冊答案