【題目】已知函數(shù),e為自然對(duì)數(shù)的底數(shù).

1)當(dāng)時(shí),求函數(shù)處的切線方程;

2)若函數(shù)只有一個(gè)零點(diǎn),求a的值.

【答案】12

【解析】

1)代入,得,所以,求出,由直線方程的點(diǎn)斜式,即可得到切線方程;

2)分兩種情況,考慮函數(shù)的最小值,令最小值等于0,即可得到a的值.

解:(1)當(dāng)時(shí),,

,,∴切線方程為 ;

2,,

,得

1)當(dāng)時(shí),,

x

0

極小值

所以當(dāng)時(shí),有最小值,.

因?yàn)楹瘮?shù)只有一個(gè)零點(diǎn),且當(dāng)時(shí),都有,

所以,即,

因?yàn)楫?dāng)時(shí),,所以此方程無(wú)解.

2)當(dāng)時(shí),,

x

0

極小值

所以當(dāng)時(shí),有最小值,.

因?yàn)楹瘮?shù)只有一個(gè)零點(diǎn),且當(dāng)時(shí),都有,

所以,即)(*),

設(shè)),則

,得,

當(dāng)時(shí),;當(dāng)時(shí),;

所以當(dāng)時(shí),,

所以方程(*)有且只有一解.

綜上,時(shí)函數(shù)只有一個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,左頂點(diǎn)為,離心率為,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),,線段的中垂線為.若直線與直線相交于點(diǎn),與直線相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,,為線段上一點(diǎn),的中點(diǎn).

1)證明:平面;

2)求點(diǎn)到平面的距離;

3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在梯形ABCD中,DCAB,DCCB,EAB的中點(diǎn),且AB=2BC=2CD=4(如圖所示),將ADE沿DE翻折,使AB=2(如圖所示),F是線段AD上一點(diǎn),且AF=2DF

(Ⅰ)求四棱錐A-BCDE的體積;

(Ⅱ)在線段BE上是否存在一點(diǎn)G,使EF∥平面ACG?若存在,請(qǐng)指出點(diǎn)G的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有初級(jí)教師21人,中級(jí)教師14人,高級(jí)教師7人,現(xiàn)采用分層抽樣的方法從這些教師中抽取6人對(duì)績(jī)效工資情況進(jìn)行調(diào)查.

(1)求應(yīng)從初級(jí)教師,中級(jí)教師,高級(jí)教師中分別抽取的人數(shù);

(2)若從抽取的6名教師中隨機(jī)抽取2名做進(jìn)一步數(shù)據(jù)分析,求抽取的2名均為初級(jí)教師的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點(diǎn).

(1)求證:平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,⊥底面,,ADDCAP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC;

(2)F為棱PC上一點(diǎn),滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下表:

1,2,3,

4,5,6,7,8,

9,10,11,12,13,14,15,

1617,1819,2021,22,23,24,

……

問:(1)此表第行的第一個(gè)數(shù)與最后一個(gè)數(shù)分別是多少?

2)此表第行的各個(gè)數(shù)之和是多少?

32019是第幾行的第幾個(gè)數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】暑假期間,某旅行社為吸引中學(xué)生去某基地參加夏令營(yíng),推出如下收費(fèi)標(biāo)準(zhǔn):若夏令營(yíng)人數(shù)不超過30,則每位同學(xué)需交費(fèi)用600元;若夏令營(yíng)人數(shù)超過30,則營(yíng)員每多1人,每人交費(fèi)額減少10元(即:營(yíng)員31人時(shí),每人交費(fèi)590元,營(yíng)員32人時(shí),每人交費(fèi)580元,以此類推),直到達(dá)到滿額70人為止.

1)寫出夏令營(yíng)每位同學(xué)需交費(fèi)用(單位:元)與夏令營(yíng)人數(shù)之間的函數(shù)關(guān)系式;

2)當(dāng)夏令營(yíng)人數(shù)為多少時(shí),旅行社可以獲得最大收入?最大收入是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案