在平面直角坐標系中,雙曲線的離心率為              .

試題分析:由方程可知,
點評:求離心率問題首先由方程找到
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線的焦點與雙曲線的右焦點重合,則實數(shù)的值是      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B,

(1)若|AB|=8,求拋物線的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構成的三角形周長為
(1)求橢圓的方程;
(2)設直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,橢圓的四個頂點構成的四邊形為菱形,若菱形的內(nèi)切圓恰好過焦點,則橢圓的離心率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

中心在原點,焦點在x軸上,若長軸長為18,且兩個焦點恰好將長軸三等分,則此橢圓的標準方程為______________________________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過橢=1的右焦點作一條斜率為2的直線與橢圓交于A、B兩點,O為坐標原點,求弦AB的長_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓)的兩焦點分別為、,以為邊作正三角形,若正三角形的第三個頂點恰好是橢圓短軸的一個端點,則橢圓的離心率為 (    )  
A.  B. C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則1<t<4; ②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;    ④若,則C表是長軸在x軸上的橢圓.
其中真命題的序號為             (把所有正確命題的序號都填上)。

查看答案和解析>>

同步練習冊答案