定義區(qū)間(c,d),[c,d),(c,d],[c,d]的長度均為d-c(d>c)已知實(shí)數(shù)a>b,則滿足
1
x-a
+
1
x-b
≥1
的x構(gòu)成的區(qū)間的長度之和為(  )
A、1
B、
a-b
2
C、a+b
D、2
分析:元不等式即 
x2-(2+a+b)x+ab+a+b
(x-a)(x-b)
≤ 0
,設(shè) x2-(2+a+b)x+ab+a+b=0 的根為 x1和x2,則由求根
公式可得這兩個(gè)根的值,結(jié)合數(shù)軸,用穿根法來解的不等式的解集,從而求得解集構(gòu)成的區(qū)間的長度之和.
解答:精英家教網(wǎng)解:∵
1
x-a
+
1
x-b
≥1
,實(shí)數(shù)a>b,∴
2x-(a+b)
(x-a)(x-b)
1,
x2-(2+a+b)x+ab+a+b
(x-a)(x-b)
≤ 0

設(shè) x2-(2+a+b)x+ab+a+b=0 的根為 x1和x2,則由求根公式可得,
x1=
a+b+2-
(a-b)2+4
2
∈(b,a),
x2=
a+b+2+
(a-b)2+4
2
>a,
把不等式的根排在數(shù)軸上,用穿根法求得不等式的解集為(b,x1)∪(a,x2 ),
故解集構(gòu)成的區(qū)間的長度之和為 (x1-b)+(x2-a )
=(x1+x2 )-a-b=(a+b+2)-a-b=2,
故選 D.
點(diǎn)評:本題考查分式不等式的解法,用穿根法解分式不等式和高次不等式,求出x1和x2,是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義區(qū)間(c,d],(c,d],(c,d),[c,d]的長度均為d-c,其中d>c.若a,b是實(shí)數(shù),且a>b,則滿足不等式
1
x-a
+
1
x-b
≥1的x構(gòu)成的區(qū)間的長度之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義區(qū)間(c,d],[c,d),(c,d),[c,d]的長度均為d-c,其中d>c.則滿足不等式
1
a1x-1
+
1
a2x-1
≥1,   (a1>0,  a2>0)
的x構(gòu)成的區(qū)間長度之和為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省海安高級中學(xué)、南京外國語學(xué)校、金陵中學(xué)高三第三次調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題

定義區(qū)間(c,d],(c,d],(c,d),[c,d]的長度均為d-c,其中d>c.若a,b是實(shí)數(shù),且a>b,則滿足不等式≥1的x構(gòu)成的區(qū)間的長度之和為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年安徽省阜陽市太和縣第二職業(yè)高級中學(xué)高三質(zhì)量檢測數(shù)學(xué)試卷10(理科)(解析版) 題型:選擇題

定義區(qū)間(c,d),[c,d),(c,d],[c,d]的長度均為d-c(d>c)已知實(shí)數(shù)a>b,則滿足的x構(gòu)成的區(qū)間的長度之和為( )
A.1
B.
C.a(chǎn)+b
D.2

查看答案和解析>>

同步練習(xí)冊答案