已知橢圓:的離心率為,右焦點為(,0).
(1)求橢圓的方程;
(2)若過原點作兩條互相垂直的射線,與橢圓交于,兩點,求證:點到直線的距離為定值.
(1)(2)見解析
解析試題分析:(1)由離心率,右焦點坐標(biāo)易得各常量值. (2)先假設(shè),當(dāng)直線AB斜率存在時,與橢圓方程聯(lián)立,可得又OA⊥OB,滿足根與系數(shù)的關(guān)系,可得4 m2=3 k2+3,代入點到直線的距離可得d=.
試題解析:(1)由右焦點為(,0),則,又,所以,
那么 4分
(2) 設(shè),,若k存在,則設(shè)直線AB:y=kx+m.
由,得 6分
>0, 8分
有OA⊥OB知x1x2+y1y2=x1x2+(k x1+m) (k x2+m)=(1+k2) x1x2+k m(x1+x2)=0 10分
代入,得4 m2=3 k2+3原點到直線AB的距離d=. 12分
當(dāng)AB的斜率不存在時,,可得,依然成立. 13分
所以點O到直線的距離為定值 14分
考點:本題考查橢圓的標(biāo)準(zhǔn)的相關(guān)概念,標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的準(zhǔn)線與x軸交于點M,過點M作圓的兩條切線,切點為A、B,.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點為橢圓右焦點,圓與橢圓的一個公共點為,且直線與圓相切于點.
(1)求的值及橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足,其中M、N是橢圓上的點,為原點,直線OM與ON的斜率之積為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點和,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當(dāng)點在圓上運動時,求點的軌跡方程;
(2)已知,是曲線上的兩點,若曲線上存在點,滿足(為坐標(biāo)原點),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:上,且橢圓的離心率e =.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓經(jīng)過點,一個焦點為.
(1)求橢圓的方程;
(2)若直線與軸交于點,與橢圓交于兩點,線段的垂直平分線與軸交于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓:,稱圓心在原點,半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點是橢圓的“準(zhǔn)圓”上的動點,過點作橢圓的切線交“準(zhǔn)圓”于點.
(。┊(dāng)點為“準(zhǔn)圓”與軸正半軸的交點時,求直線的方程并證明;
(ⅱ)求證:線段的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線.
(1)若圓心在拋物線上的動圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經(jīng)過的定點坐標(biāo);
(2)拋物線的焦點為,若過點的直線與拋物線相交于兩點,若,求直線的斜率;
(3)若過正半軸上點的直線與該拋物線交于兩點,為拋物線上異于的任意一點,記連線的斜率為試求滿足成等差數(shù)列的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構(gòu)成斜邊長為2的等腰直角三角形
(1)求橢圓的方程;
(2)過點的動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q?若存在求出點Q的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com