【題目】已知函數(shù),.
(1)若,求函數(shù)的單調減區(qū)間;
(2)若關于x的不等式恒成立,求實數(shù)a的范圍.
【答案】(1)(2)a≥﹣2
【解析】
(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函的遞減區(qū)間即可;
(2)問題等價于在x∈(0,+∞)上恒成立,令,根據(jù)函數(shù)的單調性求出a的范圍即可.
解(1)f'(x)=3x2+2ax﹣a2=(3x﹣a)(x+a)
由f'(x)<0且a<0得:
∴函數(shù)f(x)的單調減區(qū)間為
(2)依題意x∈(0,+∞)時,不等式2xlnx≤f'(x)+a2+1恒成立,
等價于在x∈(0,+∞)上恒成立.
令
則
當x∈(0,1)時,h'(x)>0,h(x)單調遞增
當x∈(1,+∞)時,h'(x)<0,h(x)單調遞減
∴當x=1時,h(x)取得最大值h(1)=﹣2
故a≥﹣2
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一張矩形白紙,,,,分別為,的中點,現(xiàn)分別將,沿,DF折起,且、在平面同側,下列命題正確的是_________(寫出所有正確命題的序號)
①平面平面時,
②當平面平面時,平面
③當、重合于點時,
④當、重合于點時,三棱錐的外接球的半徑為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,點是線段上的動點,則下列說法錯誤的是( )
A. 當點移動至中點時,直線與平面所成角最大且為
B. 無論點在上怎么移動,都有
C. 當點移動至中點時,才有與相交于一點,記為點,且
D. 無論點在上怎么移動,異面直線與所成角都不可能是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)調查,某學校開設了“街舞”、“圍棋”、“武術”三個社團,三個社團參加的人數(shù)如下表所示:
社團 | 街舞 | 圍棋 | 武術 |
人數(shù) | 320 | 240 | 200 |
為調查社團開展情況,學校社團管理部采用分層抽樣的方法從中抽取一個容量為n的樣本,已知從“圍棋”社團抽取的同學比從“街舞”社團抽取的同學少2人.
(1)求三個社團分別抽取了多少同學;
(2)若從“圍棋”社團抽取的同學中選出2人擔任該社團活動監(jiān)督的職務,已知“圍棋”社團被抽取的同學中有2名女生,求至少有1名女同學被選為監(jiān)督職務的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務量.現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為,,,,,,七組,整理得到如圖所示的頻率分布直方圖.
(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于65單的概率;
(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案①的概率;
(3)若從人均日收入的角度考慮,請你利用所學的統(tǒng)計學知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com