【題目】四棱錐中, 面, 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面與交于點,則異面直線與所成角的正切值為__________.
【答案】
【解析】
延長交的延長線與點Q,連接QE交PA于點K,設(shè)QA=x,
由,得,則,所以.
取的中點為M,連接EM,則,
所以,則,所以AK=.
由AD//BC,得異面直線與所成角即為,
則異面直線與所成角的正切值為.
【題型】填空題
【結(jié)束】
17
【題目】在極坐標(biāo)系中,極點為,已知曲線: 與曲線: 交于不同的兩點, .
(1)求的值;
(2)求過點且與直線平行的直線的極坐標(biāo)方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司近年來科研費(fèi)用支出萬元與公司所獲利潤萬元之間有如表的統(tǒng)計
數(shù)據(jù):參考公式:用最小二乘法求出關(guān)于的線性回歸方程為: ,
其中: , ,參考數(shù)值: 。
(Ⅰ)求出;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù)可知公司所獲利潤萬元與科研費(fèi)用支出萬元線性相關(guān),請用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測該公司科研費(fèi)用支出為10萬元時公司所獲得的利潤。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一臺風(fēng)中心在港口南偏東方向上,距離港口千米處的海面上形成,并以每小時千米的速度向正北方向移動,距臺風(fēng)中心千米以內(nèi)的范圍將受到臺風(fēng)的影響,則港口受到臺風(fēng)影響的時間為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為的正方體中,為的中點,為上任意一點,,為上任意兩點,且的長為定值,則下面的四個值中不為定值的是( )
A. 點到平面的距離B. 三棱錐的體積
C. 直線與平面所成的角D. 二面角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測點A、B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音的時間比在B地晚
秒. A地測得該儀器彈至最高點H時的仰角為30°.
(1)求A、C兩地的距離;
(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長方形,且,是的中點,作交于點.
(1)證明:平面;
(2)若三棱錐的體積為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】()直線過點(2,3),且當(dāng)傾斜角是直線的傾斜角的二倍時,求直線方程.
()當(dāng)與軸正半軸交于點、軸正半軸交于點,且的面積最小時,求直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com