如圖,已知橢圓 的離心率為 ,點(diǎn) 為其下焦點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),過 的直線 (其中)與橢圓 相交于兩點(diǎn),且滿足:.

(1)試用  表示 ;
(2)求  的最大值;
(3)若 ,求  的取值范圍.

(1);(2)離心率的最大值為;(3)的取值范圍是.

解析試題分析:(1)設(shè),聯(lián)立橢圓與直線的方程,消去得到,應(yīng)用二次方程根與系數(shù)的關(guān)系得到,然后計(jì)算得,將其代入化簡(jiǎn)即可得到;(2)利用(1)中得到的,即(注意),結(jié)合,化簡(jiǎn)求解即可得出的最大值;(3)利用先求出的取值范圍,最后根據(jù)(1)中,求出的取值范圍即可.
試題解析:(1)聯(lián)立方程消去,化簡(jiǎn)得    1分
設(shè),則有,           3分


  5分
                   6分
(2)由(1)知,∴        8分
   ∴離心率的最大值為                  10分
(3)∵     ∴        ∴          12分
解得         ∴
的取值范圍是                  14分
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程及其性質(zhì);2.二次方程根與系數(shù)的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)為雙曲線的一個(gè)焦點(diǎn),且兩條曲線都經(jīng)過點(diǎn).

(1)求這兩條曲線的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)在拋物線上,且它與雙曲線的左,右焦點(diǎn)構(gòu)成的三角形的面積為4,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓過點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過點(diǎn)且斜率為的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線在點(diǎn),處的切線垂直相交于點(diǎn),直線與橢圓相交于,兩點(diǎn).

(1)求拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)的距離;
(2)設(shè)點(diǎn)到直線的距離為,試問:是否存在直線,使得,,成等比數(shù)列?若存在,求直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求以橢圓的焦點(diǎn)為焦點(diǎn),且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),動(dòng)點(diǎn)軸上的正射影為點(diǎn),且滿足直線.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線,其準(zhǔn)線方程為,過準(zhǔn)線與軸的交點(diǎn)做直線交拋物線于兩點(diǎn).
(1)若點(diǎn)中點(diǎn),求直線的方程;
(2)設(shè)拋物線的焦點(diǎn)為,當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)過點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動(dòng)點(diǎn)在直線上,過作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過作直線.證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,過點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦長(zhǎng)為;為橢圓上的四個(gè)點(diǎn)。
(Ⅰ)求橢圓的方程;
(Ⅱ)若,,求四邊形的面積的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案