過雙曲線的右焦點作傾斜角為的直線交雙曲線于A、B兩點,
(1)求線段AB的中點C到右焦點的距離。
(2)求線段AB的長。   
(1);(2)6
,由已知有,AB的方程為,   1分
將其代入得到,則                2分
的中點的坐標為,于是                        4分
                                          6分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)直線(為參數(shù),為常數(shù)且)被以原點為極點,軸的正半軸為極軸,方程為的曲線所截,求截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題15分)如圖,S(1,1)是拋物線為上的一點,弦SC,SD分別交軸于A,B兩點,且SA=SB。
(I)求證:直線CD的斜率為定值;
(Ⅱ)延長DC交軸于點E,若,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知橢圓C的中心在坐標原點,離心率,且其中一個焦點與拋物線的焦點重合.
(1)求橢圓C的方程;
(2)過點S(,0)的動直線l交橢圓CA、B兩點,試問:在坐標平面上是否存在一個定點T,使得無論l如何轉動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(1)求t的值;
(2)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知直線所經(jīng)過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為3.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知圓,直線.試證明:當點在橢圓上運動時,直線與圓恒相交,并求直線被圓所截得弦長的取值范圍.
(Ⅲ)設直線與橢圓交于兩點,若直線軸于點,且,當變化時,求 的值;   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的焦點在軸,長軸長為10,離心率為,則該橢圓的標準方程為     。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線的右焦點作直線交雙曲線與兩點,若實數(shù)使直線恰有三條,則="           " (     )
A.2B.3C.4D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點,點 是兩曲線的一個交點,且軸,若為雙曲線的一條漸近線,則的傾斜角所在的區(qū)間可能是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案