如圖,在直三棱柱中,已知,,.
(1)求異面直線與夾角的余弦值;
(2)求二面角平面角的余弦值.
(1),(2).
【解析】
試題分析:(1)利用空間向量求線線角,關(guān)鍵在于正確表示各點(diǎn)的坐標(biāo). 以為正交基底,建立空間直角坐標(biāo)系.則,,,,所以,,因此,所以異面直線與夾角的余弦值為.(2)利用空間向量求二面角,關(guān)鍵在于求出一個(gè)法向量. 設(shè)平面的法向量為,則 即取平面的一個(gè)法向量為;同理可得平面的一個(gè)法向量為;由兩向量數(shù)量積可得二面角平面角的余弦值為.
試題解析:
如圖,以為正交基底,建立空間直角坐標(biāo)系.
則,,,,所以,,
,.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719083548656859/SYS201411171908526435930143_DA/SYS201411171908526435930143_DA.036.png">,
所以異面直線與夾角的余弦值為. 4分
(2)設(shè)平面的法向量為,
則 即
取平面的一個(gè)法向量為;
所以二面角平面角的余弦值為. 10分
考點(diǎn):利用空間向量求線線角及二面角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測二文科數(shù)學(xué)試卷(解析版) 題型:填空題
在中,已知,若 分別是角所對的邊,則的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:填空題
若中心在原點(diǎn)、焦點(diǎn)在坐標(biāo)軸上的雙曲線的一條漸近線方程為,則此雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知為不共線的向量,設(shè)條件M: ;條件N:對一切,不等式恒成立.則M是N的 條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù).在區(qū)間上隨機(jī)取一,則使得的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省徐州市高三第三次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最小值;
(3)記函數(shù)圖象為曲線,設(shè)點(diǎn),是曲線上不同的兩點(diǎn),點(diǎn)為線段的中點(diǎn),過點(diǎn)作軸的垂線交曲線于點(diǎn).試問:曲線在點(diǎn)處的切線是否平行于直線?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省徐州市高三第三次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,在△中,已知,,,,,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省徐州市高三第三次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,在△中,已知,,,,,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高考模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)函數(shù),若對任意給定的,都存在唯一的,滿足,則正實(shí)數(shù)的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com