【題目】已知集合P={x|x2﹣2x﹣8≤0},Q={x|x≥a},(RP)∪Q=R,則a的取值范圍是( )
A.(﹣2,+∞)
B.(4,+∞)
C.(﹣∞,﹣2]
D.(﹣∞,4]
【答案】C
【解析】解:∵集合P={x|x2﹣2x﹣8≤0}={x|﹣2≤x≤4}, ∴CRP={x|x<﹣2或x>4},
∵Q={x|x≥a},(RP)∪Q=R,
∴a≤﹣2,故a的取值范圍是(﹣∞,﹣2].
故選為:C.
【考點(diǎn)精析】關(guān)于本題考查的交、并、補(bǔ)集的混合運(yùn)算,需要了解求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a,b滿足2a=3,3b=2,則函數(shù)f(x)=ax+x﹣b的零點(diǎn)所在的區(qū)間是( )
A.(﹣2,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)在(﹣∞,+∞)單調(diào)遞減,且為奇函數(shù).若f(1)=﹣1,則滿足﹣1≤f(x﹣2)≤1的x的取值范圍是( )
A.[﹣2,2]
B.[﹣1,1]
C.[0,4]
D.[1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:13+23=32 , 13+23+33=62 , 13+23+33+43=102 , …,根據(jù)上述規(guī)律,第五個(gè)等式為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題:“三角形的內(nèi)角至多有一個(gè)鈍角”,正確的假設(shè)是( )
A.三角形的內(nèi)角至少有一個(gè)鈍角
B.三角形的內(nèi)角至少有兩個(gè)鈍角
C.三角形的內(nèi)角沒(méi)有一個(gè)鈍角
D.三角形的內(nèi)角沒(méi)有一個(gè)鈍角或至少有兩個(gè)鈍角
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l過(guò)圓x2+(y﹣3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是( )
A.x+y﹣2=0
B.x﹣y+2=0
C.x+y﹣3=0
D.x﹣y+3=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com