已知橢圓的一個焦點與拋物線的焦點重合,且截拋物線的準線所得弦長為,傾斜角為的直線過點.
(1)求該橢圓的方程;
(2)設橢圓的另一個焦點為,問拋物線上是否存在一點,使得關于直線對稱,若存在,求出點的坐標,若不存在,說明理由.
(1);(2)拋物線上存在一點,使得關于直線對稱.

試題分析:(1)求橢圓的方程,可利用待定系數(shù)法求出的值即可,首先確定拋物線的焦點與準線方程為,利用橢圓焦點與拋物線的焦點重合,得,且截拋物線的準線所得弦長為,得交點為,建立方程,求出的值,即可求得橢圓的方程;(2)根據(jù)傾斜角為的直線過點,可得直線的方程,由(1)知橢圓的另一個焦點為,利用關于直線對稱,利用對稱,可求得的坐標,由此可得結論.
試題解析:(1)拋物線的焦點為,準線方程為,
∴    ①                         2分
又橢圓截拋物線的準線所得弦長為,
∴ 得上交點為,∴    ②         4分
由①代入②得,解得(舍去),
從而 
∴該橢圓的方程為該橢圓的方程為         6分
(2)∵ 傾斜角為的直線過點
∴ 直線的方程為,即,         7分
由(1)知橢圓的另一個焦點為,設關于直線對稱,則得  ,                     9分
解得,即,                    2分
滿足,故點在拋物線上。所以拋物線上存在一點,使得關于直線對稱。             13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上且過點,離心率是
(1)求橢圓的標準方程;
(2)直線過點且與橢圓交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點為橢圓的右焦點,且橢圓的長軸長為4,M、N是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設動點滿足:,直線的斜率之積為,證明:存在定點使
為定值,并求出的坐標;
(3)若在第一象限,且點關于原點對稱,垂直于軸于點,連接 并延長交橢圓于點,記直線的斜率分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F2為右焦點,若∠F1PF2=60°,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為,且過點(2,).
(1)求橢圓C的標準方程;
(2)M,N,P,Q是橢圓C上的四個不同的點,兩條都不和x軸垂直的直線MN和PQ分別過點F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓與雙曲線x2-y2=0有相同的焦點,且離心率為.
(1)求橢圓的標準方程;
(2)過點P(0,1)的直線與該橢圓交于A,B兩點,O為坐標原點,若=2,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓=1(a>b>0)的離心率e=,右焦點為F(c,0),方程ax2+2bx+c=0的兩個實數(shù)根分別是x1和x2,則點P(x1,x2)到原點的距離為(  )
A.B.
C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓和雙曲線有相同的焦點是它們的一個交點,則的形狀是(   )
A.銳角三角形B.直角三角形
C.鈍角三角形D.隨的變化而變化

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

F1F2分別是橢圓Ex2=1(0<b<1)的左、右焦點,過F1的直線lE相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.

查看答案和解析>>

同步練習冊答案