已知函數(shù).
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)當時,若在區(qū)間上的最小值為,求的取值范圍.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)將代入得:,利用導數(shù)便可求得曲線在點處的切線方程;
(Ⅱ).
得:.因為,所以.下面就結合圖象分情況求出在區(qū)間上的最小值,再由其最小值為,求出的取值范圍.
試題解析:(Ⅰ)當時,,
此時:,于是:切線方程為.
(Ⅱ)
得:
時,,函數(shù)上單調遞增,于是滿足條件
時,函數(shù)上單調遞減,在上單調遞增,于是不滿足條件.
時,函數(shù)上單調遞減,此時不滿足條件.
綜上所述:實數(shù)的取值范圍是.
考點:1、導數(shù)的應用;2、解不等式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)求的單調區(qū)間及最大值;
(2)恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若處取得極大值,求實數(shù)的值;
(2)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)當,時,求函數(shù)的最大值;
(2)令,其圖象上存在一點,使此處切線的斜率,求實數(shù)的取值范圍;
(3)當時,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調區(qū)間和極值;
(Ⅱ)當時,不等式恒成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調遞增區(qū)間;
(Ⅱ)設,,,為函數(shù)的圖象上任意不同兩點,若過,兩點的直線的斜率恒大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)上是增函數(shù),
(1)求實數(shù)的取值集合
(2)當取值集合中的最小值時,定義數(shù)列;滿足,,求數(shù)列的通項公式;
(3)若,數(shù)列的前項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(Ⅰ)設,,證明:在區(qū)間內存在唯一的零點;
(Ⅱ)設,若對任意,均有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中為常數(shù),,函數(shù)的圖像在它們與坐標軸交點處的切線分別為、,且.
(1)求常數(shù)的值及、的方程;
(2)求證:對于函數(shù)公共定義域內的任意實數(shù),有
(3)若存在使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案