為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立作了10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1、l2,已知兩人所得的試驗(yàn)數(shù)據(jù)中,變量x和y的數(shù)據(jù)的平均值都相等,且分別都是s、t,那么下列說(shuō)法正確的是( 。
A、直線l1和l2一定有公共點(diǎn)(s,t)B、直線l1和l2相交,但交點(diǎn)不一定是(s,t)C、必有l(wèi)1∥l2D、l1與l2必定重合
分析:根據(jù)兩組數(shù)據(jù)的變量x和y的數(shù)據(jù)的平均值都相等,且分別都是s、t,可以知道兩組數(shù)據(jù)的樣本中心點(diǎn)相同,根據(jù)線性回歸直線一定過(guò)樣本中心點(diǎn),得到兩條直線都過(guò)一個(gè)點(diǎn)(s,t)
解答:解:線性回歸直線方程為
y
=
b
x+
a
,而
a
=
.
y
-
b
.
x

∵變量x和y的數(shù)據(jù)的平均值都相等且分別都是s、t,
∴(s,t)一定在回歸直線上.
∴直線l1和l2一定有公共點(diǎn)(s,t).
故選A
點(diǎn)評(píng):本題考查線性回歸方程,考查兩組數(shù)據(jù)的特點(diǎn),考查線性回歸直線一定過(guò)樣本中心點(diǎn),考查兩條直線的關(guān)系,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值都是t,那么下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩同學(xué)各自獨(dú)立地做100次和150次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為t1和t2,已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)值的平均值都是s,對(duì)變量y的觀測(cè)值的平均值都是t,那么下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩個(gè)同學(xué)各自獨(dú)立地做了10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2.已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均數(shù)都為s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均數(shù)都為t,那么下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2.已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均數(shù)都為s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均數(shù)都為t,則下列說(shuō)法正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案