【題目】在平面直角坐標系中,圓,把圓上每一點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,且傾斜角為,經過點的直線與曲線交于兩點.

(1)當時,求曲線的普通方程與直線的參數(shù)方程;

(2)求點兩點的距離之積的最小值.

【答案】(1) 的方程為, 的參數(shù)方程是是參數(shù)).(2) .

【解析】試題分析: 由圓上每一點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,代入點坐標求出普通方程,將時代入,求直線的參數(shù)方程(2)將參數(shù)方程代入利用公式求出兩點的距離之積的最小值

解析:(1)設圓上任意一點的坐標為,曲線上一點的坐標為,

根據(jù)題意,得,即.

又點在圓上,

所以,

即曲線的方程為,

由題知,

所以直線的參數(shù)方程是是參數(shù)).

(2)將直線的參數(shù)方程是參數(shù))代入,

(*).

兩點對應的參數(shù)分別為,

,

時,經檢驗,(*)式中,

取得最小值,即最小值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調查了A、B兩個地區(qū)共100名觀眾,得到如下的列聯(lián)表:

非常滿意

滿意

合計

A

30

y

B

x

z

合計

已知在被調查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中“非常滿意”的觀眾的概率為0.35,且.請完成上述表格,并根據(jù)表格判斷是否有95%的把握認為觀眾的滿意程度與所在地區(qū)有關系?

附:參考公式:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F為拋物線Ep0)的焦點,C,1)為E上一點,且|CF|=2.過F任作兩條互相垂直的直線,分別交拋物線EP,QM,N兩點,A,B分別為線段PQMN的中點.

1)求拋物線E的方程及點C的坐標;

2)試問是否為定值?若是,求出此定值;若不是,請說明理由;

3)證明直線AB經過一個定點,求此定點的坐標,并求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, 分別是的中點.

(1)求證: 平面;

(2)若三棱柱的體積為4,求異面直線夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖①是一棟新農村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設∠FMH

(1)求屋頂面積S關于的函數(shù)關系式;

(2)已知上部屋頂造價與屋頂面積成正比,比例系數(shù)為k(k為正的常數(shù)),下部主體造價與其 高度成正比,比例系數(shù)為16 k.現(xiàn)欲造一棟上、下總高度為6 m的別墅,試問:當為何值時,總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用五種不同顏色(顏色可以不全用完)給三棱柱的六個頂點涂色,要求每個點涂一種顏色,且每條棱的兩個端點涂不同顏色,則不同的涂色種數(shù)有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第18屆國際籃聯(lián)籃球世界杯將于2019年8月31日至9月15日在中國北京、廣州等八座城市舉行.屆時,甲、乙、丙、丁四名籃球世界杯志愿者將隨機分到、、三個不同的崗位服務,每個崗位至少有一名志愿者.

(1)求甲、乙兩人不在同一個崗位服務的概率;

(2)設隨機變量為這四名志愿者中參加崗位服務的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.

(1) 求出,并猜測的表達式;

(2) 求證:+…+.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與正切函數(shù)相鄰兩支曲線的交點的橫坐標分別為, 且有,假設函數(shù)的兩個不同的零點分別為, ,若在區(qū)間內存在兩個不同的實數(shù), , 調整順序后構成等差數(shù)列,的值為

A. B. C. 或不存在 D.

查看答案和解析>>

同步練習冊答案