已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若上恒成立,求所有實(shí)數(shù)的值;
(3)對(duì)任意的,證明:

(1)遞增區(qū)間為,遞減區(qū)間為;(2);(3)略.

解析試題分析:此題是導(dǎo)數(shù)的綜合題.(1)考察函數(shù)的求導(dǎo),導(dǎo)數(shù)大于(大于或等于)零的區(qū)間即為函數(shù)遞增區(qū)間,小于(小于或等于)零的區(qū)間即為函數(shù)遞減區(qū)間;(2)恒成立問題一般情況下是轉(zhuǎn)化為求最值問題,借助第一問的單調(diào)性,注意主元思想的變換;(3)見詳解.
試題解析:(1),
當(dāng)時(shí),,減區(qū)間為 
當(dāng)時(shí),由,由
遞增區(qū)間為,遞減區(qū)間為 
(2)由(1)知:當(dāng)時(shí),上為減區(qū)間,而
在區(qū)間上不可能恒成立
當(dāng)時(shí),上遞增,在上遞減,,令, 依題意有,而,且
上遞減,在上遞增,∴,故  
(3)由(2)知:時(shí),恒成立
恒成立則
     又由上恒成立,
      
綜上所述:對(duì)任意的,證明:  
考點(diǎn):導(dǎo)數(shù)的求法,利用導(dǎo)數(shù)求函數(shù)最值,不等式的證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的增函數(shù),對(duì)于任意的,都有,且滿足.
(1)求的值;   
(2)求滿足的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),),
(1)求函數(shù)的單調(diào)區(qū)間,并確定其零點(diǎn)個(gè)數(shù);
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(3)證明不等式 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)討論的奇偶性;
(3)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的三個(gè)函數(shù),,且處取得極值.
(1)求a的值及函數(shù)的單調(diào)區(qū)間.
(2)求證:當(dāng)時(shí),恒有成立.[來源

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某小區(qū)想利用一矩形空地建市民健身廣場(chǎng),設(shè)計(jì)時(shí)決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個(gè)等腰直角三角形,其中,且中,,經(jīng)測(cè)量得到.為保證安全同時(shí)考慮美觀,健身廣場(chǎng)周圍準(zhǔn)備加設(shè)一個(gè)保護(hù)欄.設(shè)計(jì)時(shí)經(jīng)過點(diǎn)作一直線交,從而得到五邊形的市民健身廣場(chǎng),設(shè)
(1)將五邊形的面積表示為的函數(shù);
(2)當(dāng)為何值時(shí),市民健身廣場(chǎng)的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知定義在R上的奇函數(shù)滿足,則的值為           .               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e7/e/16sqk4.gif" style="vertical-align:middle;" />,集合,若P:“”是
Q:“”的充分不必要條件,則實(shí)數(shù)的取值范圍    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

某地街道呈現(xiàn)東—西、南—北向的網(wǎng)格狀,相鄰街距都為1.兩街道相交的點(diǎn)稱為格點(diǎn).若以互相垂直的兩條街道為軸建立直角坐標(biāo)系,現(xiàn)有下述格點(diǎn),,,,為報(bào)刊零售點(diǎn).請(qǐng)確定一個(gè)格點(diǎn)(除零售點(diǎn)外)__________為發(fā)行站,使6個(gè)零售點(diǎn)沿街道到發(fā)行站之間路程的和最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案