設a為實數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調區(qū)間及極值;
(2)求證:當a>ln2-1且x >0時,ex>x2-2ax+1

(1)     (2)見解析

解析試題分析:(1)首先求出的導數(shù),解方程,進一步得到不等式的解集,從而得到函數(shù)的單調區(qū)間和極值.
(2)欲證當a>ln2-1且x >0時,ex>x2-2ax+1,

則只需證當時,
從而轉化為利用導數(shù)求的最小值問題.
試題解析:解:(1)由
于是當變化時,的變化情況如下表:







0
+

單調遞減

單調遞增
 
的單調遞減區(qū)間是,間調遞增區(qū)間是
處取得極小值,極小值為                  6分
(2)設,于是
由(1)知,當時,
最小值為
于是對任意的,都有,所以內單調遞增.
于是當時,對任意
都有
,從而對任意,
即:故,            14分
考點:1、導數(shù)在研究函數(shù)性質中的應用;2、等價轉論的思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax--3ln x,其中a為常數(shù).
(1)當函數(shù)f(x)的圖象在點處的切線的斜率為1時,求函數(shù)f(x)在上的最小值;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
(3)在(1)的條件下,過點P(1,-4)作函數(shù)F(x)=x2[f(x)+3lnx-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當a=2時,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調性;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1處的切線方程.
(2)若不等式f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)當時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=x2+aln(x+1)有兩個極值點x1,x2,且x1<x2.
(1)求實數(shù)a的取值范圍;
(2)當a=時,判斷方程f(x)=-的實數(shù)根的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)時都取得極值.
(1)求的值及的極大值與極小值;
(2)若方程有三個互異的實根,求的取值范圍;
(3)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)若存在單調遞減區(qū)間,求實數(shù)的取值范圍;
(2)若,求證:當時,恒成立;
(3)利用(2)的結論證明:若,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=x3x2+6xa.
(1)對于任意實數(shù)xf′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍.

查看答案和解析>>

同步練習冊答案