【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn.求滿足不等式>2010的n的最小值.
【答案】(1)an=2n-1,n∈N*;(2)n的最小值為10.
【解析】試題分析:本題屬于基礎(chǔ)題.對(duì)已知條件,用代替得,兩式相減可得,湊配得,由此可證得是等比數(shù)列,從而求出通項(xiàng)公式,這是已知數(shù)列前項(xiàng)和與項(xiàng)之間關(guān)系的一般處理方法;(2)由(1)可得,采用錯(cuò)位相減法可求出其前項(xiàng)和 ,不等式>2 010就轉(zhuǎn)化為,可知n的最小值是10.
試題解析:(1)因?yàn)?/span>Sn+n=2an,所以Sn-1=2an-1-(n-1)(n≥2,n∈N*).兩式相減,得an=2an-1+1.
所以an+1=2(an-1+1)(n≥2,n∈N*),所以數(shù)列{an+1}為等比數(shù)列.
因?yàn)?/span>Sn+n=2an,令n=1得a1=1.
a1+1=2,所以an+1=2n,所以an=2n-1.
(2)因?yàn)?/span>bn=(2n+1)an+2n+1,所以bn=(2n+1)·2n.
所以Tn=3×2+5×22+7×23+…+(2n-1)·2n-1+(2n+1)·2n, ①
2Tn=3×22+5×23+…+(2n-1)·2n+(2n+1)·2n+1, ②
①-②,得-Tn=3×2+2(22+23+…+2n)-(2n+1)·2n+1
=6+2×-(2n+1)·2n+1
=-2+2n+2-(2n+1)·2n+1=-2-(2n-1)·2n+1.
所以Tn=2+(2n-1)·2n+1.
若>2 010,
則>2 010,即2n+1>2 010.
由于210=1 024,211=2 048,所以n+1≥11,即n≥10.
所以滿足不等式>2 010的n的最小值是10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動(dòng),為了解本次考試學(xué)生的某學(xué)科成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))
(Ⅰ)求樣本容量和頻率分布直方圖中的的值;
(Ⅱ)在選取的樣本中,從成績?cè)?/span>分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生參加“省級(jí)學(xué)科基礎(chǔ)知識(shí)競賽”,求所抽取的名學(xué)生中恰有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個(gè),一排中各個(gè)釘子恰好對(duì)準(zhǔn)上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個(gè)直徑略小于兩顆釘子間隔的小球,當(dāng)小球從兩釘之間的間隙下落時(shí),由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個(gè)出口處各放置一個(gè)容器接住小球.
(Ⅰ)理論上,小球落入4號(hào)容器的概率是多少?
(Ⅱ)一數(shù)學(xué)興趣小組取3個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,四邊形是矩形,平面 平面,點(diǎn)分別為、中點(diǎn).
(1)求證: 平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,且對(duì)任意正整數(shù)都成立,數(shù)列的前項(xiàng)和為.
(1)若,且,求;
(2)是否存在實(shí)數(shù)k,使數(shù)列是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有k的值;若不存在,請(qǐng)說明理由;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們]對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在1565歲的人群中隨機(jī)調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
年齡 | |||||
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
45歲以下 | 45歲以上 | 總計(jì) | |
支持 | |||
不支持 | /td> | ||
總計(jì) |
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年月湖北潛江將舉辦第六屆“中國湖北(潛江)龍蝦節(jié)”,為了解不同年齡的人對(duì)“中國湖北(潛江)龍蝦節(jié)”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在歲之間的人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)“年輕人”與“中老年人”的人數(shù)之比為.
關(guān)注 | 不關(guān)注 | 合計(jì) | |
年輕人 | |||
中老年人 | |||
合計(jì) |
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認(rèn)為關(guān)注“中國湖北(潛江)龍蝦節(jié)”是否和年齡段有關(guān)?
(2)現(xiàn)已用分層抽樣的辦法從中老年人中選取了人進(jìn)行問卷調(diào)查.若再從這人中選取人進(jìn)行面對(duì)面詢問,求事件“選取的人中恰有人關(guān)注“中國湖北(潛江)龍蝦節(jié)””的概率.
附:參考公式,其中.
臨界值表:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com