年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù)滿足:集合中至少存在三個(gè)不同的數(shù)構(gòu)成等比數(shù)列,則稱函數(shù)是等比源函數(shù).
(1)判斷下列函數(shù):①;②中,哪些是等比源函數(shù)?(不需證明)
(2)證明:對(duì)任意的正奇數(shù),函數(shù)不是等比源函數(shù);
(3)證明:任意的,函數(shù)都是等比源函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
是否存在常數(shù)a,b使等式對(duì)于一切n∈N*都成立?若存在,求出a,b的值,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
觀察以下等式:
sin230°+cos260°+sin 30°·cos 60°=,
sin240°+cos270°+sin 40°·cos 70°=,
sin215°+cos245°+sin 15°·cos 45°=.
…
寫(xiě)出反映一般規(guī)律的等式,并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)(2)(3)(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1)求出f(5).
(2)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關(guān)系式,并根據(jù)你得到的關(guān)系式求f(n)的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
先閱讀下列不等式的證法,再解決后面的問(wèn)題:
已知a1,a2∈R,a1+a2=1,求證:+≥.
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,f(x)對(duì)一切實(shí)數(shù)x∈R,恒有f(x)≥0,則Δ=4-8(+)≤0,∴+≥.
(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,請(qǐng)寫(xiě)出上述結(jié)論的推廣式;
(2)參考上述解法,對(duì)你推廣的結(jié)論加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是由個(gè)實(shí)數(shù)組成的行列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.
(Ⅰ) 數(shù)表如表1所示,若經(jīng)過(guò)兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù),請(qǐng)寫(xiě)出每次“操作”后所得的數(shù)表(寫(xiě)出一種方法即可);
表1
1 | 2 | 3 | |
1 | 0 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)為虛數(shù)單位,若復(fù)數(shù)為純虛數(shù),則實(shí)數(shù)的值為( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com