設(shè)是由個實數(shù)組成的列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變該行(或該列)中所有數(shù)的符號,稱為一次“操作”.
(Ⅰ) 數(shù)表如表1所示,若經(jīng)過兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實數(shù),請寫出每次“操作”后所得的數(shù)表(寫出一種方法即可);
表1

1
2
3


1
0
1
(Ⅱ) 數(shù)表如表2所示,若必須經(jīng)過兩次“操作”,才可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)的所有可能值;
表2

(Ⅲ)對由個實數(shù)組成的列的任意一個數(shù)表,能否經(jīng)過有限次“操作”以后,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù)?請說明理由.

(I) 詳見解析; (II) 或 ;(Ⅲ) 能,理由詳見解析.

解析試題分析::(I)根據(jù)題中一次“操作”的含義,將原數(shù)表改變第4列,再改變第2行即可;或者改變第2行,改變第4列也可得(寫出一種即可);(II)  每一列所有數(shù)之和分別為2,0,-2,0,每一行所有數(shù)之和分別為-1,1;①如果操作第三列,第一行之和為2a-1,第二行之和為5-2a,列出不等關(guān)系解得a,b范圍進(jìn)而分情況進(jìn)行第二次操作;②如果操作第一行,易由條件得a的值;(III) 按要求對某行(或某列)操作一次時,則該行的行和(或該列的列和),由負(fù)數(shù)變?yōu)檎龜?shù),都會引起該行的行和(或該列的列和)增大,從而也就使得數(shù)陣中mn個數(shù)之和增加.
解:法1:

法2:

法3:

3分
(II) 每一列所有數(shù)之和分別為2,0,,0,每一行所有數(shù)之和分別為,1;
①如果首先操作第三列,則

則第一行之和為,第二行之和為
這兩個數(shù)中,必須有一個為負(fù)數(shù),另外一個為非負(fù)數(shù),
所以
當(dāng)時,則接下來只能操作第一行,

此時每列之和分別為
必有,解得
當(dāng)時,則接下來操作第二行
 
此時第4列和為負(fù),不符合題意.                                             6分    
② 如果首先操作第一行

則每一列之和分別為,,,
當(dāng)時,每列各數(shù)之和已經(jīng)非負(fù),不需要進(jìn)行第二次操作,舍掉
當(dāng)時,,至少有一個為負(fù)數(shù),
所以此時必須有,即,所以
經(jīng)檢驗,符合要求
綜上:                                                     9分
(III)能經(jīng)過有限次操作以后,使得得到的數(shù)表所有的行和與所有的列和均為非負(fù)實數(shù)。證明如下:
記數(shù)表中第行第列的實數(shù)為),各行的數(shù)字之和分別為,各列的數(shù)字之和分別為,,,數(shù)表中個實數(shù)之和為,則。記


按要求操作一次時,使該行的行和(或該列的列和)由負(fù)變正,都會引起(和)增大,從而也就使得增加,增加的幅度大于等于,但是每次操作都只是改變數(shù)表中某行(或某列)各數(shù)的符號,而不改變其絕對值,顯然,必然小于等于最初的數(shù)表中個實數(shù)的絕對值之和,可見其增加的趨勢必在有限次之后終止。終止之時,必是所有的行和與所有的列和均為非負(fù)實數(shù),否則,只要再改變該行或該列的符號,就又會繼續(xù)上升,導(dǎo)致矛盾,故結(jié)論成立。                                13分
考點:推理與證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

⑴用綜合法證明:;
⑵用反證法證明:若均為實數(shù),且,,,求證中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用反證法證明:如果x>,那么x2+2x-1≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項組成集合,從集合中任取個數(shù),其所有可能的個數(shù)的乘積的和為(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記.例如:當(dāng)時,,,;當(dāng)時,,,
(Ⅰ)求
(Ⅱ)猜想,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是等差數(shù)列,設(shè)N+),
 N+),問Pn與Qn哪一個大?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)關(guān)于正整數(shù)的函數(shù)
(1)求
(2)是否存在常數(shù)使得對一切自然數(shù)都成立?并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

請觀察以下三個式子:
;
;
,
歸納出一般的結(jié)論,并用數(shù)學(xué)歸納法證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若復(fù)數(shù)z滿足 ,則z的虛部為

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

復(fù)數(shù)(i是虛數(shù)單位)的共軛復(fù)數(shù)為

A.2-i B.-2-i C.-2+i D.2+i

查看答案和解析>>

同步練習(xí)冊答案