是否存在常數(shù)a、b使等式+…+對(duì)所有的正整數(shù)n都成立?

解析:假設(shè)存在a、b使命題成立,將n=1,2代入等式有

原式可化為+…+(n∈N*),

下面用數(shù)學(xué)歸納法證明:(1)當(dāng)n=1時(shí),已驗(yàn)證成立.

(2)假設(shè)n=k時(shí)命題成立,就是+…+,那么當(dāng)n=k+1時(shí),+…+

=.

就是說(shuō)n=k+1時(shí)命題成立.根據(jù)(1)(2)知對(duì)一切n∈N命題成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在常數(shù)a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)對(duì)于任意的n∈N+總成立?若存在,求出來(lái)并證明;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若{an}是公差d≠0的等差數(shù)列,通項(xiàng)為an,{bn}是公比q≠1的等比數(shù)列.已知a1=b1=1,且a2=b2,a6=b3.

(1)求d和q;

(2)是否存在常數(shù)a,b使對(duì)于一切n∈N*都有an=logabn+b成立?若存在,則求出來(lái);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

是否存在常數(shù)a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)對(duì)于任意的n∈N+總成立?若存在,求出來(lái)并證明;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年山東省濟(jì)寧市兗州市高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

是否存在常數(shù)a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)對(duì)于任意的n∈N+總成立?若存在,求出來(lái)并證明;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案