【題目】以下四個(gè)關(guān)于圓錐曲線命題:
①“曲線為橢圓”的充分不必要條件是“”;
②若雙曲線的離心率,且與橢圓有相同的焦點(diǎn),則該雙曲線的漸近線方程為;
③拋物線的準(zhǔn)線方程為;
④長為6的線段的端點(diǎn)分別在、軸上移動(dòng),動(dòng)點(diǎn)滿足,則動(dòng)點(diǎn)的軌跡方程為.
其中正確命題的序號(hào)為_________.
【答案】③④
【解析】
對于①, 求出“曲線為橢圓”的充要條件,判斷與“”關(guān)系,即得①的正誤;對于②,根據(jù)已知條件求出雙曲線的方程,從而求出漸近線方程,即得②的正誤;對于③,把拋物線的方程化為標(biāo)準(zhǔn)式,求出準(zhǔn)線方程,即得③的正誤;對于④,設(shè),根據(jù),可得,代入,求出動(dòng)點(diǎn)的軌跡方程,即得④的正誤.
對于①, “曲線為橢圓”的充要條件是“且”.
所以“曲線為橢圓”的必要不充分條件是“”,故①錯(cuò)誤;
對于②,橢圓的焦點(diǎn)為,又雙曲線的離心率,所以雙曲線的方程為,所以雙曲線的漸近線方程為,故②錯(cuò)誤;
對于③,拋物線的方程化為標(biāo)準(zhǔn)式,準(zhǔn)線方程為,故③正確;
對于④,設(shè),,
,即,即動(dòng)點(diǎn)的軌跡方程為.故④正確.
故答案為:③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有,兩家乒乓球俱樂部,兩家的設(shè)備和服務(wù)都很好,但收費(fèi)標(biāo)準(zhǔn)不同,俱樂部每張球臺(tái)每小時(shí)5元,俱樂部按月收費(fèi),一個(gè)月中以內(nèi)(含)每張球臺(tái)90元,超過的部分每張球臺(tái)每小時(shí)加收2元.某學(xué)校準(zhǔn)備下個(gè)月從這兩家中的一家租一張球臺(tái)開展活動(dòng),其活動(dòng)時(shí)間不少于,也不超過.
(1)設(shè)在俱樂部租一-張球臺(tái)開展活動(dòng)的收費(fèi)為元,在俱樂部租一張球臺(tái)開展活動(dòng)的收費(fèi)為元,試求和的解析式;
(2)問選擇哪家俱樂部比較合算?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曾玉、劉云、李夢、張熙四人被北京大學(xué)、清華大學(xué)、武漢大學(xué)和復(fù)旦大學(xué)錄取,他們分別被哪個(gè)學(xué)校錄取,同學(xué)們做了如下的猜想
甲同學(xué)猜:曾玉被武漢大學(xué)錄取,李夢被復(fù)旦大學(xué)錄取
同學(xué)乙猜:劉云被清華大學(xué)錄取,張熙被北京大學(xué)錄取
同學(xué)丙猜:曾玉被復(fù)旦大學(xué)錄取,李夢被清華大學(xué)錄取
同學(xué)丁猜:劉云被清華大學(xué)錄取,張熙被武漢大學(xué)錄取
結(jié)果,恰好有三位同學(xué)的猜想各對了一半,還有一位同學(xué)的猜想都不對
那么曾玉、劉云、李夢、張熙四人被錄取的大小可能是( )
A.北京大學(xué)、清華大學(xué)、復(fù)旦大學(xué)、武漢大學(xué)
B.武漢大學(xué)、清華大學(xué)、復(fù)旦大學(xué)、北京大學(xué)
C.清華大學(xué)、北京大學(xué)、武漢大學(xué) 、復(fù)旦大學(xué)
D.武漢大學(xué)、復(fù)旦大學(xué)、清華大學(xué)、北京大學(xué)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①命題“若,則方程無實(shí)根”的否命題;
②命題“在中,,那么為等邊三角形”的逆命題;
③命題“若,則”的逆否命題;
④“若,則的解集為”的逆命題;
其中真命題的序號(hào)為( )
A.①②③④B.①②④C.②④D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,給定下列命題:
①若方程有兩個(gè)不同的實(shí)數(shù)根,則;
②若方程恰好只有一個(gè)實(shí)數(shù)根,則;
③若,總有恒成立,則;
④若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù).
則正確命題的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分?jǐn)?shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計(jì) |
(Ⅱ)現(xiàn)從上述樣本“成績不優(yōu)秀”的學(xué)生中,抽取人進(jìn)行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn),兩點(diǎn),且圓心C在直線上.
(1)求圓C的方程;
(2)設(shè),對圓C上任意一點(diǎn)P,在直線MC上是否存在與點(diǎn)M不重合的點(diǎn)N,使是常數(shù),若存在,求出點(diǎn)N坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科技改變生活,方便生活.共享單車的使用就是云服務(wù)的一種實(shí)踐,它是指企業(yè)與政府合作,為居民出行提供單車共享服務(wù),它符合低碳出行理念,為解決城市出行的“最后一公里”提供了有力支撐,是共享經(jīng)濟(jì)的一種新形態(tài).某校學(xué)生社團(tuán)為研究當(dāng)?shù)厥褂霉蚕韱诬嚾巳旱哪挲g狀況,隨機(jī)抽取了當(dāng)?shù)?/span>名使用共享單車的群眾作出調(diào)查,所得頻率分布直方圖如圖所示.
(1)估計(jì)當(dāng)?shù)毓蚕韱诬囀褂谜吣挲g的中位數(shù);
(2)若按照分層抽樣從年齡在,的人群中抽取人,再從這人中隨機(jī)抽取人調(diào)查單車使用體驗(yàn)情況,記抽取的人中年齡在的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn.求滿足不等式>2010的n的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com